Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Deep belief networkIn machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
Échelle de Richtervignette|droite|Représentation d'une onde sismique. Historiquement, l'échelle de Richter a été l'une des premières tentatives d'évaluer numériquement l'intensité des tremblements de terre, grâce à la magnitude de Richter qui mesure l'énergie sismique radiée (énergie des ondes sismiques) lors du séisme. Imprécise et dépassée, elle a depuis été remplacée par des échelles plus précises permettant de mesurer la magnitude des séismes. L'éponyme de l’échelle de Richter est le sismologue américain Charles Francis Richter (-) qui l'a proposée en .
Magnitude (sismologie)vignette|Sismogramme enregistré par un sismographe à l'Observatoire Weston dans le Massachusetts, aux États-Unis. En sismologie, la magnitude est la représentation logarithmique du moment sismique, qui est lui-même une mesure de l'énergie libérée par un séisme déduite de l'amplitude de certaines ondes sismiques à des distances spécifiques (mesure de l'amplitude sur un sismogramme de l'onde P ou S). Plus le séisme a libéré d'énergie, plus la magnitude est élevée : un accroissement de magnitude de 1 correspond à une multiplication par 30 de l'énergie et par 10 de l'amplitude du mouvement.
Magnitude de momentL'échelle de magnitude de moment est une des échelles logarithmiques qui mesurent la magnitude d'un séisme, c'est-à-dire la « taille » d'un séisme proportionnelle à l'énergie sismique dégagée. Centrée sur les basses fréquences des ondes sismiques, elle quantifie précisément l'énergie émise par le séisme. Elle ne présente pas de saturation pour les plus grands événements, dont la magnitude peut être sous-évaluée par d'autres échelles, faussant ainsi les dispositifs d'alerte rapide essentiels pour la protection des populations.
Apprentissage par renforcement profondL'apprentissage par renforcement profond (en anglais : deep reinforcement learning ou deep RL) est un sous-domaine de l'apprentissage automatique (en anglais : machine learning) qui combine l'apprentissage par renforcement et l'apprentissage profond (en anglais : deep learning). L'apprentissage par renforcement considère le problème d'un agent informatique (par exemple, un robot, un agent conversationnel, un personnage dans un jeu vidéo, etc.) qui apprend à prendre des décisions par essais et erreurs.
Échelle de Mercallivignette|La ville chilienne de Valdivia après le tremblement de terre de 1960, le plus important jamais enregistré (9,5 MW). Il a atteint une intensité de XII sur l'échelle de Mercalli. L'échelle de Mercalli est une échelle de mesure de l'intensité d'un séisme, qui se fonde sur l'observation des effets et des conséquences du séisme en un lieu donné. Il est important de distinguer l'intensité d'un séisme de sa magnitude, laquelle mesure l'énergie libérée par le séisme à son foyer.
Seismic intensity scalesSeismic intensity scales categorize the intensity or severity of ground shaking (quaking) at a given location, such as resulting from an earthquake. They are distinguished from seismic magnitude scales, which measure the magnitude or overall strength of an earthquake, which may, or perhaps may not, cause perceptible shaking. Intensity scales are based on the observed effects of the shaking, such as the degree to which people or animals were alarmed, and the extent and severity of damage to different kinds of structures or natural features.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Espace d'échelleLa théorie de lEspace d'échelle () est un cadre pour la représentation du signal développé par les communautés de la vision artificielle, du , et du traitement du signal. C'est une théorie formelle pour manipuler les structures de l'image à différentes échelles, en représentant une image comme une famille d'images lissées à un paramètre, la représentation d'espace échelle, paramétrée par la taille d'un noyau lissant utilisé pour supprimer les structures dans les petites échelles. Soit un signal.