Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
The study presents a new retrofit solution for strengthening metallic I-girders. The retrofit system involves two iron-based shape memory alloy (Fe-SMA, ‘memory-steel’) strips (each with a width and thickness of 50 and 1.5 mm, respectively) that are mechanically anchored (using friction clamps) to the girders. The shape memory effect (SME) of the Fe-SMA material has been used to activate/prestress the strips by heating to a predefined temperature. The main advantage of the proposed SMA-retrofit system is that, unlike conventional systems, it can prestress itself without a need for heavy hydraulic jacks, which then results in a significant reduction of the required time, labor works and cost of prestressing process. In order to evaluate the efficiency of the proposed retrofit system, in this study, a series of static and fatigue four-point bending tests were performed on a 6.4-m SMA-retrofitted beam. Five static tests were performed on a steel beam with different SMA prestressing levels and included a reference un-strengthened test. The test results indicated that the achieved prestressing levels (i.e., recovery stresses) in the Fe-SMAs for activation temperatures of 100, 160, and 260 °C were approximately 160, 330, and 430 MPa, respectively. The induced compressive stresses in the bottom flange were in the range of 10–30 MPa. It was demonstrated that the Fe-SMAs could be re-activated for multiple times even up to higher temperatures (than the initial activation temperature), which would then result in higher prestressing levels. These features make the proposed SMA-based system a versatile and adaptable retrofit solution. Furthermore, the SMA-strengthened beam with the maximum prestressing level (activation temperature of 260 °C) was subjected to 2 million load cycles with a load ratio of R = 0.2 and a loading frequency of 4.35 Hz. The results of the high-cycle fatigue (HCF) tests showed no slippage in the anchorage system and a stable prestressing in the Fe-SMA members during the tests, which demonstrates the reliability of the proposed system under HCF loading regime.
, ,