Catalyse hétérogènevignette|droite|Catalyseur monolytique utilisé pour l'oxydation de CO en En chimie, on parle de la catalyse hétérogène lorsque le catalyseur et les réactifs sont dans plusieurs phases. Généralement, le catalyseur est solide et les réactifs sont gazeux ou en solution aqueuse. La catalyse hétérogène est d'une importance primordiale dans de nombreux domaines de l'industrie chimique et le secteur de l'énergie. L'importance de la catalyse hétérogène est mise en évidence via les Prix Nobel pour Fritz Haber en 1918, Carl Bosch en 1931, Irving Langmuir en 1932 et Gerhard Ertl en 2007.
Énergie de dissociation d'une liaisonvignette|Animation de la dissociation d'une molécule diatomique AB en deux atomes A et B En chimie, l'énergie de dissociation d'une liaison (D0) réfère à l'une des mesures de l'énergie d'une liaison chimique. Elle correspond au changement d'enthalpie lors d'un clivage homolytique avec des réactifs et des produits de la réaction d'homolyse à 0 K (zéro absolu). D'ailleurs, l'énergie de dissociation d'une liaison est parfois appelée l'enthalpie de dissociation d'une liaison.
Géométrie moléculaire plane carréeEn chimie, une géométrie moléculaire plane carrée ou plan-carré est la géométrie des molécules où un atome central, noté A, est lié à quatre atomes, groupes d'atomes ou ligands, notés X, aux sommets d'un carré plan. Elle se rencontre en particulier pour les atomes centraux liés à quatre substituants mais possédant aussi deux doublets non-liants, notés E, qui viennent se placer de part et d'autre du plan. Cette configuration est notée AX4E2 selon la théorie VSEPR.
Géométrie moléculaire plane trigonaleEn chimie, une géométrie moléculaire plane trigonale est la géométrie des molécules où un atome, noté A, est au centre et trois atomes, notés X, sont aux sommets d'un triangle, appelés atomes périphériques, tous dans un plan. Ces composés appartiennent à la classe AX3E0 selon la théorie VSEPR. Dans une espèce plane trigonale idéale, les trois ligands sont tous trois identiques et les angles de liaison sont tous de 120°. De telles espèces appartiennent au groupe ponctuel de symétrie D3h.
Isolobal principleIn organometallic chemistry, the isolobal principle (more formally known as the isolobal analogy) is a strategy used to relate the structure of organic and inorganic molecular fragments in order to predict bonding properties of organometallic compounds. Roald Hoffmann described molecular fragments as isolobal "if the number, symmetry properties, approximate energy and shape of the frontier orbitals and the number of electrons in them are similar – not identical, but similar.
Grenat de fer et d'yttriumLe grenat de fer et d'yttrium, ou YIG pour Yttrium Iron Garnet, est un composé chimique de formule , c'est-à-dire . Il est également connu sous les noms de grenat de ferrite et d'yttrium, d'oxyde de fer et d'yttrium et d'oxyde d'yttrium et de fer, ces deux dernières appellations étant généralement associées aux formes pulvérulentes. C'est un grenat de synthèse qui n'a pas été observé dans le milieu naturel. Il s'agit d'un isolant ferrimagnétique ayant une température de Curie de .