Tandem photovoltaic devices based on perovskite and crystalline silicon (PK/c-Si) absorbers have the potential to push commercial silicon single junction devices beyond their current efficiency limit. However, their scale-up to industrially relevant sizes is largely limited by current fabrication methods which rely on evaporated metallization of the front contact instead of industry standard screen-printed silver grids. To tackle this challenge, we demonstrate how a low-temperature silver paste applied by a screen-printing process can be used for the front metal grid of two-terminal perovskite-silicon tandem structures. Small-area tandem devices with such printed front metallization show minimal thermal degradation when annealed up to 140 degrees C in air, resulting in silver bulk resistivity of
Quentin Jean-Marie Armand Guesnay
,