Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
In the context of static real-time optimization, the use of measurements allows dealing with uncertainty in the form of plant-model mismatch and disturbances. Modifier adaptation (MA) is a measurement-based scheme that uses first-order corrections to the model cost and constraint functions so as to achieve plant optimality upon convergence. However, first-order corrections rely crucially on the estimation of plant gradients, which typically requires costly plant experiments. The present paper proposes to implement real-time optimization via MA but use recursive Gaussian processes to represent the plant-model mismatch and estimate the plant gradients. This way, one can (i) attenuate the effect of measurement noise, and (ii) avoid plant-gradient estimation by means finite-difference schemes and, often, additional plant experiments. We use steady-state optimization data to build Gaussian-process regression functions. The efficiency of the proposed scheme is illustrated via a constrained variant of the Williams-Otto reactor problem.
Pascal Frossard, Roberto Gerson De Albuquerque Azevedo, Chaofan He