Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En programmation informatique, l'optimisation de code est la pratique consistant à améliorer l'efficacité du code informatique d'un programme ou d'une bibliothèque logicielle. Ces améliorations permettent généralement au programme résultant de s'exécuter plus rapidement, de prendre moins de place en mémoire, de limiter sa consommation de ressources (par exemple les fichiers), ou de consommer moins d'énergie électrique. La règle numéro un de l'optimisation est qu'elle ne doit intervenir qu'une fois que le programme fonctionne et répond aux spécifications fonctionnelles. L'expérience montre qu'appliquer des optimisations de bas niveau du code avant que ces deux conditions ne soient réalisées revient le plus souvent à une perte de temps et s'avère néfaste à la clarté du code et au bon fonctionnement du programme : Cependant cette citation, tronquée, est très souvent mal interprétée. La version complète étant : La citation originale indique que généralement durant l'écriture d'un code, on peut laisser de côté les optimisations locales, de bas niveau (réécriture en assembleur, déroulage de boucle, etc.). Il est possible d'interpréter cette citation en déduisant de celle-ci que les optimisations de haut niveau concernant le choix des algorithmes ou l'architecture d'un projet doivent venir avant celle de bas niveau. Ainsi, ce n'est que vers la fin de l'écriture du programme, une fois que l'analyse montre qu'un détail de bas niveau est critique qu'il peut éventuellement être nécessaire de le modifier : Au contraire plus le projet grandit et plus ces optimisations de haut niveau seront difficiles, coûteuses (en termes de temps, difficulté et budget) voire impossibles à effectuer. La plupart des compilateurs récents pratiquent de façon automatique un certain nombre d'optimisations qu'il serait fastidieux d'effectuer manuellement et qui rendraient le code source moins lisible.
Jérôme Waser, Julien Aymeric Borrel
Silvestro Micera, Simone Romeni, Laura Toni, Fiorenzo Artoni
David Atienza Alonso, Miguel Peon Quiros, José Angel Miranda Calero, Hossein Taji