Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Friction and wear cause energy wastage and system failure. Usually, thicker overcoats serve to combat such tribological concerns, but in many contact sliding systems, their large thickness hinders active components of the systems, degrades functionality, and constitutes a major barrier for technological developments. While sub-10-nm overcoats are of key interest, traditional overcoats suffer from rapid wear and degradation at this thickness regime. Using an enhanced atomic intermixing approach, we develop a similar to 7- to 8-nm-thick carbon/silicon nitride (C/SiNx) multilayer overcoat demonstrating extremely high wear resistance and low friction at all tribological length scales, yielding similar to 2 to 10 times better macroscale wear durability than previously reported thicker (similar to 20 to 100 nm) overcoats on tape drive heads. We report the discovery of many fundamental parameters that govern contact sliding and reveal how tuning atomic intermixing at interfaces and varying carbon and SiNx thicknesses strongly affect friction and wear, which are crucial for advancing numerous technologies.
Jean-François Molinari, Enrico Milanese, Tobias Brink
Jean-François Molinari, Sacha Zenon Wattel