AimantUn aimant permanent, ou simplement aimant dans le langage courant, est un objet fabriqué dans un matériau magnétique dur, c’est-à-dire dont l'aimantation rémanente et le champ coercitif sont grands (voir ci-dessous). Cela lui donne des propriétés particulières liées à l'existence du champ magnétique, comme celle d'exercer une force d'attraction sur tout matériau ferromagnétique. Le mot aimant est, comme le mot diamant, dérivé du grec ancien ἀδάμας, adámas (« fer particulièrement dur ou diamant »), apparenté à l'adjectif ἀδάμαστος, adámastos, (« indomptable »), en raison de la dureté de la pierre d'aimant.
Hystérésis magnétiqueL'hystérésis magnétique désigne le phénomène d'hystérésis observé lors de l'aimantation d'un matériau. Ainsi, lorsqu'un champ magnétique externe est appliqué à un matériau ferromagnétique tel le fer, les dipôles magnétiques atomiques s'alignent en fonction de ce dernier. Lorsque le champ est retiré, une partie de l'alignement demeure au sein du matériau. Ce dernier a été aimanté. La relation entre la force du champ (H) et l'aimantation (M) n'est pas linéaire.
Spontaneous magnetizationSpontaneous magnetization is the appearance of an ordered spin state (magnetization) at zero applied magnetic field in a ferromagnetic or ferrimagnetic material below a critical point called the Curie temperature or TC. Heated to temperatures above TC, ferromagnetic materials become paramagnetic and their magnetic behavior is dominated by spin waves or magnons, which are boson collective excitations with energies in the meV range.
FerromagnétismeLe ferromagnétisme est le mécanisme fondamental par lequel certains matériaux (fer, cobalt, nickel...) sont attirés par des aimants ou forment des aimants permanents. On distingue en physique différents types de magnétismes. Le ferromagnétisme (qui inclut le ferrimagnétisme) se trouve être celui à l’origine des champs magnétiques les plus importants : c’est celui qui crée des forces suffisamment importantes pour être senties et qui est responsable du phénomène bien connu de magnétisme dans les aimants de la vie quotidienne.
Champ coercitifEn science des matériaux, le champ coercitif d'un matériau ferromagnétique désigne l'intensité du champ magnétique qu'il est nécessaire d'appliquer à un matériau ayant initialement atteint son aimantation à saturation, pour annuler l'aimantation du matériau. Le champ coercitif est usuellement noté ou . Lorsque le champ coercitif d'un ferromagnétique est très élevé, le matériau est qualifié de dur.
SuperparamagnétismeLe superparamagnétisme est un comportement des matériaux ferromagnétiques ou ferrimagnétiques de grains de dimensions nanométriques. L’aimantation de ces grains peut se renverser spontanément sous l’influence de la température. Le temps moyen entre deux renversements est appelé temps de relaxation de Néel. En l’absence de champ magnétique appliqué, si le temps de mesure de l’aimantation des grains est beaucoup plus grand que le temps de relaxation de Néel, l'aimantation mesurée est nulle.
Classical Heisenberg modelThe Classical Heisenberg model, developed by Werner Heisenberg, is the case of the n-vector model, one of the models used in statistical physics to model ferromagnetism, and other phenomena. It can be formulated as follows: take a d-dimensional lattice, and a set of spins of the unit length each one placed on a lattice node. The model is defined through the following Hamiltonian: with a coupling between spins. The general mathematical formalism used to describe and solve the Heisenberg model and certain generalizations is developed in the article on the Potts model.
Neutron scatteringNeutron scattering, the irregular dispersal of free neutrons by matter, can refer to either the naturally occurring physical process itself or to the man-made experimental techniques that use the natural process for investigating materials. The natural/physical phenomenon is of elemental importance in nuclear engineering and the nuclear sciences. Regarding the experimental technique, understanding and manipulating neutron scattering is fundamental to the applications used in crystallography, physics, physical chemistry, biophysics, and materials research.
Point critique (thermodynamique)vignette| Le point critique d'un corps pur est le point du diagramme température-pression, généralement noté C, où s'arrête la courbe d'équilibre liquide-gaz. La température T et la pression P du point critique sont appelées température critique et pression critique du corps pur. Le volume molaire et la masse volumique du corps pur à ces température et pression (V et ρ) sont appelés volume critique et masse volumique critique (plus souvent, mais improprement, densité critique).
Masse effectiveredresse=1.5|vignette|Structure de bande générée pour Si, Ge, GaAs et InAs massifs par la méthode . La masse effective est une notion utilisée en physique du solide pour l'étude du transport des électrons. Plutôt que de décrire des électrons de masse fixée évoluant dans un potentiel donné, on les décrit comme des électrons libres dont la masse effective varie. Cette masse effective peut-être positive ou négative, supérieure ou inférieure à la masse réelle de l'électron.