Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Graph alignment in two correlated random graphs refers to the task of identifying the correspondence between vertex sets of the graphs. Recent results have characterized the exact information-theoretic threshold for graph alignment in correlated Erdös-Rény ...
This paper is devoted to the distributed complexity of finding an approximation of the maximum cut in graphs. A classical algorithm consists in letting each vertex choose its side of the cut uniformly at random. This does not require any communication and ...
A sparsifier of a graph G (Bencztir and Karger; Spielman and Teng) is a sparse weighted subgraph (G) over tilde that approximately retains the same cut structure of G. For general graphs, non-trivial sparsification is possible only by using weighted graphs ...
The maximum size of anr-uniform hypergraph without a Berge cycle of length at leastkhas been determined for allk >= r+ 3 by Furedi, Kostochka and Luo and fork
We introduce a generic \emph{two-loop} scheme for smooth minimax optimization with strongly-convex-concave objectives. Our approach applies the accelerated proximal point framework (or Catalyst) to the associated \emph{dual problem} and takes full advantag ...
Knapsack problems give a simple framework for decision making. A classical example is the min-knapsack problem (MinKnap): choose a subset of items with minimum total cost, whose total profit is above a given threshold. While this model successfully general ...
The vertex cover problem is one of the most important and intensively studied combinatorial optimization problems. Khot and Regev [Khot S, Regev O (2008) Vertex cover might be hard to approximate to within 2 - epsilon. J. Comput. System Sci. 74(3): 335-349 ...
We design a generic method to reduce the task of finding weighted matchings to that of finding short augmenting paths in unweighted graphs. This method enables us to provide efficient implementations for approximating weighted matchings in the massively pa ...