Magnetism and superconductivity of strongly correlated electrons on the triangular lattice
Publications associées (55)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In my thesis, transport measurements such as resistivity and, more importantly, thermopower S, were used to explore the phase diagram of bad metals. Bad metals are electronically correlated systems whose ground state lies close to a quantum phase transitio ...
Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves(1-5) (CDW). A number of materials in the cuprate family, which includes the high transition-temp ...
We have performed extensive density matrix renormalization group (DMRG) studies of the Hubbard model on a honeycomb ladder. The band structure (with Hubbard U = 0) exhibits an unusual quadratic band touching at half-filling, which is associated with a quan ...
The first part of this thesis discusses technical details relating to measurements of magnetic properties at ultra low temperatures. The implementation of AC susceptibility at temperatures down to 30 mK is introduced and used as a platform to showcase sele ...
We study the influence of the band structure on the symmetry and superconducting transition temperature in the (solvable) weak-coupling limit of the repulsive Hubbard model. Among other results we find that (1) as a function of increasing nematicity, start ...
More than one hundred years after the discovery of superconductivity in Leiden, the intriguing physics of several unconventional classes of superconductors continue to fascinate and challenge scientists from all over the world. The majority of these compou ...
The high-T-c cuprate superconductors are close to antiferromagnetic order. Recent measurements of magnetic excitations have reported an intriguing similarity to the spin wavesmagnons- of the antiferromagnetic insulating parent compounds, suggesting that ma ...
Among the widely studied superconducting iron-pnictide compounds belonging to the Ln1111 family (with Ln a lanthanide), a systematic investigation of the crossover region between the superconducting and the antifer-romagnetic phase for the Ln = Nd case has ...
High-temperature superconductivity emerges on doping holes or electrons into antiferromagnetic copper oxides. The large energy scale of magnetic excitations, for example, compared with phonon energies, is thought to drive superconductivity with high transi ...
Here, we show that in several p-type cuprates, the superconductor-to-insulator transition (SIT) occurs at the critical sheet resistance approximately equal to the quantum resistance of pairs, RQ=h/4e2=6.5 kΩ. In a relatively broad range of temperature ...