Spin representationIn mathematics, the spin representations are particular projective representations of the orthogonal or special orthogonal groups in arbitrary dimension and signature (i.e., including indefinite orthogonal groups). More precisely, they are two equivalent representations of the spin groups, which are double covers of the special orthogonal groups. They are usually studied over the real or complex numbers, but they can be defined over other fields. Elements of a spin representation are called spinors.
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
Weyl's theorem on complete reducibilityIn algebra, Weyl's theorem on complete reducibility is a fundamental result in the theory of Lie algebra representations (specifically in the representation theory of semisimple Lie algebras). Let be a semisimple Lie algebra over a field of characteristic zero. The theorem states that every finite-dimensional module over is semisimple as a module (i.e., a direct sum of simple modules.) Weyl's theorem implies (in fact is equivalent to) that the enveloping algebra of a finite-dimensional representation is a semisimple ring in the following way.
Dimension topologiqueEn mathématiques, une dimension topologique est une notion destinée à étendre à des espaces topologiques la notion algébrique de dimension d'un espace vectoriel. C'est un invariant topologique, entier ou infini. Les trois principales dimensions topologiques sont les deux dimensions inductives ind et Ind et la dimension de recouvrement dim. Les dimensions Ind et dim coïncident pour tout espace métrisable ; si l'espace est de plus séparable, ses trois dimensions topologiques sont égales.