Time reversal applied to fault location in power networks: Pilot test results and analyses
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
This article proposes a method for the derivation of a formula that links the maximum lightning-induced-overvoltage occurring on an overhead distribution line with the variables that characterize the lightning return stroke, such as the peak current, front ...
The evaluation of lightning ElectroMagnetic (EM) fields represents the most cumbersome part of the lightning-induced voltages computation process. Their evaluation is usually performed through a numerical routine or with simplified analytical expressions, ...
Angle and amplitude estimation errors in magnetic direction finding, called site errors, are important sensor-specific errors in lightning location systems (LLS). They are known to be caused by nearby cables and overhead lines due to induced currents. Due ...
This article summarizes the electromagnetic time-reversal (EMTR) technique for fault location, and further numerically validates its effectiveness when the fault impedance is negligible. In addition, a specific EMTR model considering the fault impedance is ...
The classical electromagnetic time reversal (EMTR) fault location method in power systems can be time consuming, especially when a high location accuracy is desired. To cope with this issue, the concept of EMTR in mismatched media has recently been introdu ...
There are three equivalent procedures to evaluate the voltages induced by lightning on power lines, namely, the Agrawal–Price–Gurbaxani model, the Taylor–Satterwhite–Harrison model, and the Rachidi model. The Cooray–Rubinstein approximation is a procedure ...
Information acquisition through crowdsensing with mobile agents is a popular way to collect data, especially in the context of smart cities where the deployment of dedicated data collectors is expensive and ineffective. It requires efficient information el ...
Dealing with realistic networks, the solution of lightning electromagnetic field coupling to transmission lines is generally obtained through a Finite-Difference Time-Domain (FDTD) algorithm interfaced with an electromagnetic simulator. As well known, the ...
The article provides analytical expressions for the electromagnetic fields generated by a lightning return stroke characterized by a channel-base current with arbitrary time waveform, in presence of either a perfectly conducting or a lossy ground, assuming ...
Currently, plenty of sensitive electronic devices are installed in secondary circuits in substations and power plants. Electronic devices may malfunction and become damaged owing to electromagnetic disturbances caused mainly by lightning surges. To protect ...