One of the obstacles to the commercialization of perovskite solar cells (PSCs) is the high price and morphological instability of the most common hole-transporting material (HTM) Spiro-OMeTAD. Herein, a novel HTM, termed V1160, based on four N,N '-bis(3-methylphenyl)-N,N '-diphenylbenzidine (TPD)-type fragments, fused by a Troger's base core, is synthesized and successfully applied in PSCs. Investigation of the optical, thermal, and photoelectrical properties shows that V1160 is a suitable candidate for application as an HTM in PSCs. A promising power conversion efficiency (PCE) of over 18% is demonstrated, which is only slightly lower than that of Spiro-OMeTAD. Moreover, V1160-based devices exhibit improved performances in dopant-free configurations and superior stability. Favorable morphological properties in combination with a simple synthesis make V1160 and related materials promising for HTM applications.
Jean-Michel Sallese, Farzan Jazaeri, Parnian Ferdowsi, Michael Saliba
Mohammad Khaja Nazeeruddin, Yi Zhang, Jianxing Xia, Nadja Isabelle Desiree Klipfel, Keith Gregory Brooks, Min Chen, Yu Shi
Hong Zhang, Zhiwen Zhou, Miao Chen