Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We investigate the problem of multi-agent coordination under rationality constraints. Specifically, role allocation, task assignment, resource allocation, etc. Inspired by human behavior, we propose a framework (CA^3NONY) that enables fast convergence to efficient and fair allocations based on a simple convention of courtesy. We prove that following such convention induces a strategy which constitutes an epsilon-subgame-perfect equilibrium of the repeated allocation game with discounting. Simulation results highlight the effectiveness of CA^3NONY as compared to state-of-the-art bandit algorithms, since it achieves more than two orders of magnitude faster convergence, higher efficiency, fairness, and average payoff.
Bryan Alexander Ford, Verónica del Carmen Estrada Galiñanes, Louis-Henri Manuel Jakob Merino, Haoqian Zhang, Mahsa Bastankhah