**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Ability of LIGO and LISA to probe the equation of state of the early Universe

Résumé

The expansion history of the Universe between the end of inflation and the onset of radiation-domination (RD) is currently unknown. If the equation of state during this period is stiffer than that of radiation, w > 1/3, the gravitational wave (GW) background from inflation acquires a blue-tilt d log rho GW/d log f = 2(w-1/3)/(w+1/3) > 0 at frequencies f >> f(RD) corresponding to modes re-entering the horizon during the stiff-domination (SD), where f(RD) is the frequency today of the horizon scale at the SD-to-RD transition. We characterized in detail the transfer function of the GW energy density spectrum, considering both 'instant' and smooth modelings of the SD-to-RD transition. The shape of the spectrum is controlled by w, f(RD), and H-inf (the Hubble scale of inflation). We determined the parameter space compatible with a detection of this signal by LIGO and LISA, including possible changes in the number of relativistic degrees of freedom, and the presence of a tensor tilt. Consistency with upper bounds on stochastic GW backgrounds, however, rules out a significant fraction of the observable parameter space. We find that this renders the signal unobservable by Advanced LIGO, in all cases. The GW background remains detectable by LISA, though only in a small island of parameter space, corresponding to scenarios with an equation of state in the range 0.46 less than or similar to w less than or similar to 0.56 and a high inflationary scale H-inf greater than or similar to 10(13) GeV, but low reheating temperature 1 MeV less than or similar to T-RD less than or similar to 150 MeV (equivalently, 10(-11) Hz less than or similar to f(RD) less than or similar to 3.6.10(-9) Hz). Implications for early Universe scenarios resting upon an SD epoch are briefly discussed.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (22)

Onde gravitationnelle

En physique, une onde gravitationnelle, appelée parfois onde de gravitation, est une oscillation de la courbure de l'espace-temps qui se propage à grande distance de son point de formation.
Albert

Univers

vignette|redresse=1.8|Représentation à l'échelle logarithmique de l'Univers observable. Au centre figure le Système solaire et, à mesure qu'on s'en éloigne, les étoiles proches, le bras de Persée, la

Gravitational wave background

The gravitational wave background (also GWB and stochastic background) is a random background of gravitational waves permeating the Universe, which is detectable by gravitational-wave experiments, li

Publications associées (19)

Chargement

Chargement

Chargement

Cosmic string networks offer one of the best prospects for detection of cosmological gravitational waves (GWs). The combined incoherent GW emission of a large number of string loops leads to a stochastic GW background (SGWB), which encodes the properties of the string network. In this paper we analyze the ability of the Laser Interferometer Space Antenna (LISA) to measure this background, considering leading models of the string networks. We find that LISA will be able to probe cosmic strings with tensions G mu greater than or similar to O(10(-17)), improving by about 6 orders of magnitude current pulsar timing arrays (PTA) constraints, and potentially 3 orders of magnitude with respect to expected constraints from next generation PTA observatories. We include in our analysis possible modifications of the SGWB spectrum due to different hypotheses regarding cosmic history and the underlying physics of the string network. These include possible modifications in the SGWB spectrum due to changes in the number of relativistic degrees of freedom in the early Universe, the presence of a non-standard equation of state before the onset of radiation domination, or changes to the network dynamics due to a string inter-commutation probability less than unity. In the event of a detection, LISA's frequency band is well-positioned to probe such cosmic events. Our results constitute a thorough exploration of the cosmic string science that will be accessible to LISA.

2020,

The stochastic gravitational wave background (SGWB) contains a wealth of information on astrophysical and cosmological processes. A major challenge of upcoming years will be to extract the information contained in this background and to disentangle the contributions of different sources. In this paper we provide the formalism to extract, from the correlation of three signals in the Laser Interferometer Space Antenna (LISA), information about the tensor three-point function, which characterizes the non-Gaussian properties of the SGWB. This observable can be crucial to discriminate whether a SGWB has a primordial or astrophysical origin. Compared to the two-point function, the SGWB three-point function has a richer dependence on the gravitational wave momenta and chiralities. It can be used therefore as a powerful discriminator between different models. For the first time we provide the response functions of LISA to a general SGWB three-point function. As examples, we study in full detail the cases of an equilateral and squeezed SGWB bispectra, and provide the explicit form of the response functions, ready to be convoluted with any theoretical prediction of the bispectrum to obtain the observable signal. We further derive the optimal estimator to compute the signal-to-noise ratio. Our formalism covers general shapes of non-Gaussianity, and can be extended straightaway to other detector geometries. Finally, we provide a short overview of models of the early universe that can give rise to a non-Gaussian SGWB.

Valerie Fiona Domcke, Daniel Garcia Figueroa, Francisco Torrenti

The first direct measurement of gravitational waves by the LIGO and Virgo collaborations has opened up new avenues to explore our Universe. This white paper outlines the challenges and gains expected in gravitational-wave searches at frequencies above the LIGO/Virgo band, with a particular focus on Ultra High-Frequency Gravitational Waves (UHF-GWs), covering the MHz to GHz range. The absence of known astrophysical sources in this frequency range provides a unique opportunity to discover physics beyond the Standard Model operating both in the early and late Universe, and we highlight some of the most promising gravitational sources. We review several detector concepts that have been proposed to take up this challenge, and compare their expected sensitivity with the signal strength predicted in various models. This report is the summary of the workshop "Challenges and opportunities of high-frequency gravitational wave detection" held at ICTP Trieste, Italy in October 2019, that set up the stage for the recently launched Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative.