**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Predicting the dynamic behavior of Francis turbine generating units

Résumé

To reduce CO2 emissions and tackle global warming, an increasing amount of electrical power consumed around the world must be obtained from renewable sources. Among these sources, hydropower has not only the advantage of leaving a very small carbon footprint, but also the ability to be flexible and compensate for the intermittent nature of other sources like solar and wind. For these qualities, a large number of new hydropower projects is foreseen in the near future. Hydropower still has a large potential for new projects worldwide. Furthermore, many already existing plants have also the possibility to modernize its facilities and increase its available installed capacity. For both new plants and modernization projects, thorough investigations are necessary to decide if the project is technically viable and economically relevant. Nevertheless, in the very early design stage, some key information regarding the properties of the future generating unit is often unknown or sometimes estimated with high uncertainty levels. One of these unknown aspects is the turbine efficiency: it can only be known with high accuracy after performing measurements on a reduced scale physical turbine model homologous to the future turbine prototype. The turbine complete characteristics of torque and discharge is also necessary for a proper dimensioning of the generating unit, as it impacts notably the overpressure in the water conduits and the overspeed of the rotating parts. Francis turbines operating at part load and full load conditions feature the so-called cavitation vortex rope in their draft tube cone. Therefore, two additional dynamic aspects can impact the performance of a Francis turbine generating unit: (1) a possible resonance between the hydraulic circuit first eigenfrequency and the excitation frequency from the vortex rope, and (2) the occurrence of high amplitude power swings and pressure surge induced by the cavitation vortex rope in unstable full load operating conditions. Currently, these two additional aspects usually remain completely unknown until the prototype enters into operation. This thesis objective is then to develop and validate new empirical models, testing and calculation procedures able to perform accurate predictions of a Francis turbine prototype dynamic behavior still in the early stage of a hydropower plant project. They can be used by engineers working in the design of Francis generating units to estimate with accuracy the final dynamic behavior of these units as a whole and, consequently, optimize the unit design to reduce costs and minimize risks related to the occurrence of undesired dynamic behavior of the cavitation vortex rope. The complete database of reduced scale physical model measurements available in the Laboratory for Hydraulic Machines (LMH) at the École Polytechnique Fédérale de Lausanne (EPFL) is used to construct empirical models able to estimate the turbine efficiency and complete characteristics. The obtained standard error in estimating peak efficiency values is then less than 1%. Extensive measurements and 1-D eigenvalue calculations are performed to better understand the dynamic behavior of the cavitation vortex in a specific test case. As a result, procedures to predict with accuracy part load resonance and full load instability are presented. These predictions can then be made soon after reduced scale model testing, i.e., usually years before the prototype enters into operation.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (12)

Publications associées (37)

Machine hydraulique

vignette|Des vérins hydrauliques sont visibles sur cette excavatrice.
Les machines hydrauliques sont des machines et outils utilisant l'énergie hydraulique pour effectuer un travail. Les engins de cha

Maquette

Une maquette est une représentation partielle ou complète d'un système ou d'un objet (existant ou en projet) afin d'en tester et valider certains aspects et/ou le comportement (maquette fonctionnelle

Énergie hydraulique

vignette|Centrale hydro-électrique de Nijni Novgorod.
L'énergie hydraulique est l'énergie fournie par le mouvement de l'eau, sous toutes ses formes : chutes d'eau, cours d'eau, courants marin, marée,

Chargement

Chargement

Chargement

Sébastien Alligné, François Avellan, Andres Müller, Christophe Nicolet

Due to the massive penetration of alternative renewable energies, hydropower is a key energy conversion technology for stabilizing the electrical power network by using hydraulic machines at off design operating conditions. At full load, the axisymmetric cavitation vortex rope developing in Francis turbines acts as an internal source of energy, leading to an instability commonly referred to as self- excited surge. 1-D models are developed to predict this phenomenon and to define the range of safe operating points for a hydropower plant. These models involve several parameters that have to be calibrated using experimental and numerical data. The present work aims to identify these parameters with URANS computations with a particular focus on the fluid damping rising when the cavitation volume oscillates. Two test cases have been investigated: a cavitation flow in a Venturi geometry without inlet swirl and a reduced scale model of a Francis turbine operating at full load conditions. The cavitation volume oscillation is forced by imposing an unsteady outlet pressure conditions. By varying the frequency of the outlet pressure, the resonance frequency is determined. Then, the pressure amplitude and the resonance frequency are used as two objectives functions for the optimization process aiming to derive the 1-D model parameters.

The massive penetration of the existing electrical grid by renewable energy sources requires a continuous extension of the operating range of hydroelectric powerplants, which can lead to cavitation flow instabilities inducing undesirable mechanical vibrations and large fluctuations of pressure and output power, putting at risk the structural integrity of the machine and ultimately the grid stability. A typical example is the development of a cavitation precessing vortex rope at the outlet of a Francis turbine runner operating at part load conditions. It acts as an excitation source for the hydraulic system, leading to the propagation of pressure fluctuations in the hydraulic circuit which are greatly amplified in case of resonance. Therefore, the assessment of the stability of hydropower plants operating at part load is crucial in order to ensure the safe extension of their operating range. The accurate prediction and transposition of pressure fluctuations from the model scale to the prototype scale by means of one-dimensional hydro-acoustic models represents a major challenge, as the physical mechanisms driving the excitation source and its interaction with the hydraulic system remain partially unclear. The main objective of this research work is to experimentally investigate the influence of the operating conditions on the dynamics of the cavitation precessing vortex rope and the excitation source it induces, as well as the interaction with the system. The test-case is a reduced scale physical model of a Francis turbine, accurately reproducing the behaviour of a real size machine. Experimental investigations include study of the flow field in the draft tube cone by means of Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV), high-speed visualizations of the cavitation vortex and pressure measurements performed at various part load operating conditions, including cavitation-free and cavitation conditions. PIV measurements of the tangential flow field in the draft tube cone in cavitation-free conditions highlight the influence of the flow discharge on the vortex characteristics in terms of trajectory, circulation and structure, as well as the link between the vortex dynamics and the intensity of the excitation source. The effect of cavitation on the vortex rope dynamics and its interaction with the surrounding system is also studied, with a particular focus on resonance conditions. Flow velocity measurements performed for different values of the Thoma number reveal that the axial and tangential velocity fields in the draft tube cone are not impacted by the propagation of large synchronous pressure fluctuations. Among the other observations is a phenomenon of frequency lock-in between the excitation source and the system's oscillations occurring for low values of the Froude number. This phenomenon is assumed to be a consequence of the non-linear coupling taking place in resonance conditions between the excitation source and the oscillation of the cavitation volume. Finally, it is shown that the convective component of the pressure fluctuations at the precession frequency represents the main source of mechanical excitation for the runner.

With economical energy market strategies based on instantaneous pricings of electricity as function of the demand or the predictions, operators harness more hydroelectric facilities to off-design operating points to cover the variations of the electricity production. Under these operating conditions, Francis turbines develop a cavitating swirling flow at the runner outlet which induces pressure fluctuations propagating in the whole hydraulic system. The core of this cavitating vortex is usually called vortex rope. At resonance conditions, the superimposition of the induced traveling waves gives rise to a standing wave leading to undesirable large pressure and output power fluctuations. The aim of this present work is to predict and to simulate this resonance phenomenon which may happen both in part load or full load operating conditions. The identification of the excitation sources induced by the cavitating vortex rope is performed with numerical simulations based on a three dimensional incompressible model, so called hydrodynamic (HD) model. The assumption of plane wave propagation in the water passages connected to the turbine is set since low surging frequencies are involved. Hence, propagation of these sources is simulated with a one dimensional compressible model, so called hydroacoustic (HA) model. The HA model covers the entire hydraulic system including the source region corresponding to the draft tube of the Francis turbine whereas the HD model covers only the source region. In this present work, a specific HA draft tube model has been developed. A momentum source modeling the forces induced by the flow acting on the draft tube wall is considered. Moreover, the fluctuating cavitation volume is considered as a mass source. Finally, a thermodynamic damping is introduced to model energy dissipation during a phase change between liquid and gas. Investigations at part load conditions aim to simulate the upper part load resonance phenomenon for which frequency of pressure fluctuations are experienced between 2 and 4 times the runner frequency. Measurements were carried out in the framework of the FLINDT project which is therefore the case study for validation. First of all, HA draft tube model parameters have been derived for the investigated operating point considering both single phase and two phase unsteady simulations with the HD model. An analysis of these parameters is performed and comparison between single phase and two phase simulation results is made. It is shown that the cavitation modeling in the HD model is necessary to find the vortex rope precession frequency which depends on the cavitation amount in the vortex core. However, the volume of vapor is underestimated and a correction factor on the Thoma number is necessary to get a good agreement between experiments and simulation results. Moreover it has been shown that the three dimensional flow in the elbow gives rise to HA sources able to excite the hydraulic system. Intensity of the sources are higher when two phase flow simulations are considered. Before simulating the upper part load resonance phenomenon, a preliminary validation of these HA parameters is performed by simulating a standard part load resonance where the vortex rope precession frequency, near 0.3 times the runner frequency, matches with the first eigenfrequency of the hydraulic system. In out of resonance conditions, maximum of pressure fluctuations amplitudes are experienced in the draft tube cone with an amplitude being 1% of the turbine head. However, when resonance occurs, maximum amplitude of pressure fluctuations reaches up to 7%. A good agreement is obtained with the order of magnitudes found in measurements available in the literature. After this preliminary validation, simulation of the upper part load resonance phenomenon has been tackled. It has been found that the mechanism inducing this phenomenon is related to an undesirable fluctuation of the cavitation volume which frequency can match with an eigenfrequency of the hydraulic system. However, this fluctuation is captured for a Thoma number much higher than the experimental one leading to a cavitation volume very small compared to the experiments. A prototype installation of four 478 MW Francis turbines located in the Canada's province British Columbia, has been chosen as the case study to analyze the full load instability phenomenon. Indeed, this instability occurred on prototype and reduced scale model as well. Hence, experimental measurements have been carried out on the reduced scale model aiming to use experimental data to validate the numerical simulations performed with the HA draft tube model. The mass source defined in this model, is described by a decisive parameter which is the mass flow gain factor. Extensively used in previous works for the analysis of this phenomenon, this parameter is defined to represent the effect of the HA fluctuations of the downstream flow rate to the cavitation volume on the mass source. In this present work, the same formulation is used and has been combined with the introduction of a new parameter: the thermodynamic damping. First of all, these HA parameters have been derived for the different investigated experimental operating points from single phase steady simulations. Then, using these computed parameters, a small perturbation stability analysis in the frequency domain has been carried out to identify the stability of the different operating points. The experimental unstable characteristic frequencies have been found out with this modal analysis. However, this analysis in the frequency domain does not give any information about the amplitude of the pressure fluctuations induced by the instability. Hence, time domain HA simulations have been performed. It has been shown that the using of constant HA draft tube model parameters leads to divergent time domain simulations, whereas nonlinear parameters depending on the pressure variable, lead to a limit cycle of finite amplitude fluctuations. Moreover, nonlinearity of the thermodynamic damping is decisive to reach this limit cycle. Finally, a methodology has been set up to predict the instability of the prototype from the investigations on the reduced scale model. A combination of measurements, numerical simulations and computation of the eigenmodes of the reduced scale model installed on test rig, allows the accurate calibration of the HA draft tube model parameters at the model scale. Finally, transposition of these parameters to the prototype according to similitude laws is applied for the stability analysis of the power plant.