Knowledge sharingKnowledge sharing is an activity through which knowledge (namely, information, skills, or expertise) is exchanged among people, friends, peers, families, communities (for example, Wikipedia), or within or between organizations. It bridges the individual and organizational knowledge, improving the absorptive and innovation capacity and thus leading to sustained competitive advantage of companies as well as individuals. Knowledge sharing is part of the knowledge management process.
Vuethumb|250px|Ommatidies de krill antarctique, composant un œil primitif adapté à une vision sous-marine. thumb|250px|Yeux de triops, primitifs et non mobiles. thumb|250px|Yeux multiples d'une araignée sauteuse (famille des Salticidae, composée d'araignées chassant à l'affut, mode de chasse nécessitant une très bonne vision). thumb|250px|Œil de la libellule Platycnemis pennipes, offrant un champ de vision très large, adapté à un comportement de prédation.
Gestion des connaissancesLa gestion des connaissances (en anglais knowledge management) est une démarche managériale pluridisciplinaire qui regroupe l'ensemble des initiatives, des méthodes et des techniques permettant de percevoir, identifier, analyser, organiser, mémoriser, partager les connaissances des membres d'une organisation – les savoirs créés par l'entreprise elle-même (marketing, recherche et développement) ou acquis de l'extérieur (intelligence économique) – en vue d'atteindre un objectif fixé. Nous sommes submergés d'informations.
Visual agnosiaVisual agnosia is an impairment in recognition of visually presented objects. It is not due to a deficit in vision (acuity, visual field, and scanning), language, memory, or intellect. While cortical blindness results from lesions to primary visual cortex, visual agnosia is often due to damage to more anterior cortex such as the posterior occipital and/or temporal lobe(s) in the brain.[2] There are two types of visual agnosia: apperceptive agnosia and associative agnosia. Recognition of visual objects occurs at two primary levels.
Word2vecEn intelligence artificielle et en apprentissage machine, Word2vec est un groupe de modèles utilisé pour le plongement lexical (word embedding). Ces modèles ont été développés par une équipe de recherche chez Google sous la direction de . Ce sont des réseaux de neurones artificiels à deux couches entraînés pour reconstruire le contexte linguistique des mots. La méthode est implémentée dans la bibliothèque Python Gensim. Deux architectures ont été initialement proposées pour apprendre les Word2vec, le modèle de sacs de mots continus (CBOW: continuous bag of words) et le modèle skip-gram.
Yahoo! SearchYahoo! Search is a Yahoo! internet search provider that uses Microsoft's Bing search engine to power results, since 2009, apart from four years with Google from 2015 until the end of 2018. Originally, "Yahoo! Search" referred to a Yahoo!-provided interface that sent queries to a searchable index of pages supplemented with its directory of websites. The results were presented to the user under the Yahoo! brand. Originally, none of the actual web crawling and data housing was done by Yahoo! itself.
Analyse des donnéesL’analyse des données (aussi appelée analyse exploratoire des données ou AED) est une famille de méthodes statistiques dont les principales caractéristiques sont d'être multidimensionnelles et descriptives. Dans l'acception française, la terminologie « analyse des données » désigne donc un sous-ensemble de ce qui est appelé plus généralement la statistique multivariée. Certaines méthodes, pour la plupart géométriques, aident à faire ressortir les relations pouvant exister entre les différentes données et à en tirer une information statistique qui permet de décrire de façon plus succincte les principales informations contenues dans ces données.
Index (base de données)En informatique, dans les bases de données, un index est une structure de données utilisée et entretenue par le système de gestion de base de données (SGBD) pour lui permettre de retrouver rapidement les données. L'utilisation d'un index simplifie et accélère les opérations de recherche, de tri, de jointure ou d'agrégation effectuées par le SGBD. L’index placé sur une table va permettre au SGBD d'accéder très rapidement aux enregistrements, selon la valeur d'un ou plusieurs champs.
Heuristique de jugementLes heuristiques de jugement, concept fréquemment employé dans le domaine de la cognition sociale, sont des opérations mentales automatiques, intuitives et rapides pouvant être statistiques ou non statistiques. Ces raccourcis cognitifs sont utilisés par les individus afin de simplifier leurs opérations mentales dans le but de répondre aux exigences de l’environnement. Par exemple, les gens ont tendance à estimer le temps mis pour trouver un emploi en fonction de la facilité avec laquelle ils peuvent penser à des individus qui ont récemment été engagés, et non selon le temps moyen de recherche dans la population.
Modèle entité-associationvignette|Un artiste peut jouer une chanson.|258x258px Le modèle entité-association (MEA) (le terme « modèle-entité-relation » est une traduction erronée largement répandue), ou diagramme entité-association ou en anglais « entity-relationship diagram », abrégé en ERD, est un modèle de données ou diagramme pour des descriptions de haut niveau de modèles conceptuels de données. Il a été conçu par Peter Chen dans les années 1970 afin de fournir une notation unifiée pour représenter les informations gérées par les systèmes de gestion de bases de données de l'époque.