Cell-Imprint Surface Modification by Contact Photolithography-Based Approaches: Direct-Cell Photolithography and Optical Soft Lithography Using PDMS Cell Imprints
Publications associées (39)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
By live-cell imaging of biological samples dynamic cellular processes can be resolved. Fluorescence microscopy (FM) and atomic force microscopy (AFM) are both capable of imaging live cells. By combining these techniques structural as well as functional inf ...
The application of stem cells in drug screening and regenerative therapy has led to important advances in basic biology and biomedicine. Such strategies require high cell numbers and the efficient maturation into faithful functional organ or tissue units. ...
Functional analysis of primary tissue-specific stem cells is hampered by their rarity. Here I developed greatly miniaturized microfluidic devices for the multiplexed, quantitative analysis of the chemotactic properties of primary, bone marrow-derived mesen ...
Functional analysis of primary tissue-specific stem cells is hampered by their rarity. Here we describe a greatly miniaturized microfluidic device for the multiplexed, quantitative analysis of the chemotactic properties of primary, bone marrow-derived mese ...
Stem cell therapies hold tremendous potential for tissue and organ regeneration. Yet, there remains significant need for better ex vivo culture and manipulation methods. On the one hand, many tissue-specific stem cells cannot be propagated without causing ...
Cellular heterogeneity is ubiquitous in any cell population. Understanding these variations is key to answering fundamental questions in immunology, developmental biology, cancer or stem cell biology. For instance, single-cell in vitro and in vivo assays h ...
Stem cells play a key role in a wide range of biological processes, in large part due to their ability to self-renew or differentiate into specialized cell types in response to various biological cues. In vivo, stem cells reside in a complex microenvironme ...
Fate choices of stem cells are regulated in response to a complex array of biochemical and physical signals from their microenvironmental niche. Whereas the molecular composition and the role of mechanical niche cues have been extensively studied, relative ...
Differentiation of stem cells into mature cells through the use of physical approaches is of great interest. Here, we prepared smart nanoenvironments by cell-imprinted substrates based on chondrocytes, tenocytes, and semifibroblasts as templates and demons ...