Preference (economics)In economics and other social sciences, preference refers to the order in which an agent ranks alternatives based on their relative utility. The process results in an "optimal choice" (whether real or theoretical). Preferences are evaluations and concern matter of value, typically in relation to practical reasoning. An individual's preferences are determined purely by a person's tastes as opposed to the good's prices, personal income, and the availability of goods. However, people are still expected to act in their best (rational) interest.
Ordinal utilityIn economics, an ordinal utility function is a function representing the preferences of an agent on an ordinal scale. Ordinal utility theory claims that it is only meaningful to ask which option is better than the other, but it is meaningless to ask how much better it is or how good it is. All of the theory of consumer decision-making under conditions of certainty can be, and typically is, expressed in terms of ordinal utility. For example, suppose George tells us that "I prefer A to B and B to C".
Problème du sac à dosEn algorithmique, le problème du sac à dos, parfois noté (KP) (de l'anglais Knapsack Problem) est un problème d'optimisation combinatoire. Ce problème classique en informatique et en mathématiques modélise une situation analogue au remplissage d'un sac à dos. Il consiste à trouver la combinaison d'éléments la plus précieuse à inclure dans un sac à dos, étant donné un ensemble d'éléments décrits par leurs poids et valeurs.
Complexité paramétréeEn algorithmique, la complexité paramétrée (ou complexité paramétrique) est une branche de la théorie de la complexité qui classifie les problèmes algorithmiques selon leur difficulté intrinsèque en fonction de plusieurs paramètres sur les données en entrée ou sur la sortie. Ce domaine est étudié depuis les années 90 comme approche pour la résolution exacte de problèmes NP-complets. Cette approche est utilisée en optimisation combinatoire, notamment en algorithmique des graphes, en intelligence artificielle, en théorie des bases de données et en bio-informatique.
Théorèmes du bien-êtreLes deux théorèmes de l'économie du bien-être sont les résultats fondamentaux de la théorie de l'équilibre général telle que formulée par Kenneth Arrow et Gérard Debreu. Obtenus par une démonstration mathématique, ces théorèmes lient certaines hypothèses sur le fonctionnement économique (concurrence pure et parfaite, homogénéité et continuité des fonctions de production et des fonctions de demande...) et la possibilité d'un état optimum de l'allocation des ressources (optimum de Pareto) Énoncé: Tout équilibre général en concurrence pure et parfaite est un optimum de Pareto.
Théorie cardinale de l'utilitévignette|Example de la théorie La théorie cardinale de l'utilité est la théorie selon laquelle l'on peut exprimer par une quantité l'utilité procurée par un montant de consommation donné, en outre c'est l'utilité ressentie. Cette hypothèse de mesurabilité suppose que l'on peut établir une hiérarchie entre les niveaux d'utilité : si l'utilité de est 100 et celle de est 300, ceci veut tout simplement dire que l'utilité de est trois fois supérieure à celle de . L'util, est l'unité proposée pour mesurer l'utilité.
Économie du bien-êtreL’économie du bien-être est une branche de l'économie qui s'intéresse à la définition et à la mesure du bien-être social, ainsi qu'au cadre d'étude à partir duquel sont conçues les politiques publiques. Elle cherche principalement à répondre à la question : « Entre plusieurs situations économiques possibles - chaque situation étant caractérisée par la façon dont sont réparties les ressources et les revenus, laquelle est la meilleure ? ».
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Complexité en moyenne des algorithmesLa complexité en moyenne d'un algorithme est la quantité d'une ressource donnée, typiquement le temps, utilisée par l'algorithme lors de son exécution pour traiter une entrée tirée selon une distribution donnée. Il s'agit par conséquent d'une moyenne de la complexité, pondérée entre les différentes entrées possibles selon la distribution choisie. Le plus souvent, on ne précise pas la distribution et on utilise implicitement une distribution uniforme (i.e.
Problème de décisionEn informatique théorique, un problème de décision est une question mathématique dont la réponse est soit « oui », soit « non ». Les logiciens s'y sont intéressés à cause de l'existence ou de la non-existence d'un algorithme répondant à la question posée. Les problèmes de décision interviennent dans deux domaines de la logique : la théorie de la calculabilité et la théorie de la complexité. Parmi les problèmes de décision citons par exemple le problème de l'arrêt, le problème de correspondance de Post ou le dernier théorème de Fermat.