Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Purpose To measure spatiotemporal B-0 field changes in real time using FID navigators (FIDnavs) and to demonstrate the efficacy of retrospectively correcting high-resolution T2*-weighted images using a novel FIDnav framework. Methods A forward model of the complex FIDnav signals was generated by simulating the effect of changes in the underlying B-0 inhomogeneity coefficients, with spatial encoding provided by a multi-channel reference image. Experiments were performed at 3T to assess the accuracy of B-0 field estimates from FIDnavs acquired from a 64-channel head coil under different shim settings and in 5 volunteers performing deep-breathing and nose-touching tasks designed to modulate the B-0 field. Second-order, in-plane spherical harmonic (SH) inhomogeneity coefficients estimated from FIDnavs were incorporated into an iterative reconstruction to retrospectively correct 2D gradient-echo images acquired in both axial and sagittal planes. Results Spatiotemporal B-0 field changes measured from rapidly acquired FIDnavs were in good agreement with the results of second-order SH fitting to the measured field maps. FIDnav field estimates accounted for a significant proportion of the Delta B-0 variance induced by deep breathing (64 +/- 21%) and nose touching (67 +/- 34%) across all volunteers. Ghosting, blurring, and intensity modulation artifacts in T2*-weighted images, induced by spatiotemporal field changes, were visibly reduced following retrospective correction with FIDnav inhomogeneity coefficients. Conclusions Spatially resolved B-0 inhomogeneity changes up to second order can be characterized in real time using the proposed approach. Retrospective FIDnav correction substantially improves T2*-weighted image quality in the presence of strong B-0 field modulations, with potential for real-time shimming.
Yves Perriard, Leopoldo Rossini, Olivier Pierre Chételat