Résumé
En physique, l'espace-temps est une représentation mathématique de l'espace et du temps comme deux notions inséparables et s'influençant l'une l'autre. En réalité, ce sont deux versions (vues sous un angle différent) d'une même entité. Cette conception de l'espace et du temps est l'un des grands bouleversements survenus au début du dans le domaine de la physique, mais aussi pour la philosophie. Elle est apparue avec la relativité restreinte et sa représentation géométrique qu'est l'espace de Minkowski ; son importance a été renforcée par la relativité générale. Le continuum espace-temps comporte quatre dimensions : trois dimensions pour l'espace, « x », « y », et « z », et une pour le temps, « t ». Afin de pouvoir les manipuler plus aisément, on s'arrange pour que ces quatre grandeurs soient homogènes à une distance en multipliant « t » par la constante « c » (célérité de la lumière dans le vide). Un événement se positionne dans le temps et l'espace par ses coordonnées « ct », « x », « y », « z », qui dépendent toutes du référentiel. Il est très difficile de s'imaginer que l'échelle des durées ne soit pas la même suivant le référentiel dans lequel on mesure, mais c'est bien le cas : elle n'est donc pas absolue ; il en va de même pour l'espace : la longueur d'un objet peut être différente selon le référentiel de mesure. Dans l'état actuel des connaissances, seul l'espace-temps comme concept unifié, qui est mathématiquement un espace de Minkowski en relativité restreinte et un espace courbe quelconque en relativité générale, est invariant quel que soit le référentiel choisi, tandis que ses dimensions d'espace et temps en sont des aspects qui dépendent du point de vue (référentiel). Le rapport entre les mesures d'espace et temps donné par la constante universelle c permet de décrire une distance d en fonction du temps : d = ct avec t le temps nécessaire à la lumière pour parcourir d. Le Soleil est à environ 150 millions de kilomètres c'est-à-dire à environ 8 minutes-lumière de la Terre.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (30)
PHYS-428: Relativity and cosmology II
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory and discusses major
PHYS-324: Classical electrodynamics
The goal of this course is the study of the physical and conceptual consequences of Maxwell equations.
PHYS-427: Relativity and cosmology I
Introduce the students to general relativity and its classical tests.
Afficher plus
Séances de cours associées (100)
Lorentz-Minkowski Spacetime
Couvre le temps d'espace de Lorentz-Minkowski, la vitesse d'interprétation de la lumière, les isométries et les principes de relativité spéciaux.
Relativité spéciale
Couvre les principaux points de la relativité restreinte, y compris les symétries, les transformations, les 4 vecteurs, les équations de Maxwell et le temps approprié.
Surfaces gothiques : Courbure, développement et stéréotomie
Déplacez-vous dans les principes géométriques de l'architecture gothique, en mettant l'accent sur les techniques de courbure de surface et de stéréotomie.
Afficher plus
Publications associées (168)
Concepts associés (46)
Relativité restreinte
La relativité restreinte est la théorie élaborée par Albert Einstein en 1905 en vue de tirer toutes les conséquences physiques de la relativité galiléenne et du principe selon lequel la vitesse de la lumière dans le vide a la même valeur dans tous les référentiels galiléens (ou inertiels), ce qui était implicitement énoncé dans les équations de Maxwell (mais interprété bien différemment jusque-là, avec « l'espace absolu » de Newton et léther).
Gravitation
La gravitation, l'une des quatre interactions fondamentales qui régissent l'Univers, est l' physique responsable de l'attraction des corps massifs. Elle se manifeste notamment par l'attraction terrestre qui nous retient au sol, la gravité, qui est responsable de plusieurs manifestations naturelles; les marées, l'orbite des planètes autour du Soleil, la sphéricité de la plupart des corps célestes en sont quelques exemples. D'une manière plus générale, la structure à grande échelle de l'Univers est déterminée par la gravitation.
Espace de Minkowski
thumb|Représentation schématique de l'espace de Minkowski, qui montre seulement deux des trois dimensions spatiales. En géométrie et en relativité restreinte, l'espace de Minkowski du nom de son inventeur Hermann Minkowski, appelé aussi l'espace-temps de Minkowski ou parfois l'espace-temps de Poincaré-Minkowski, est un espace mathématique, et plus précisément un espace affine pseudo-euclidien à quatre dimensions, modélisant l'espace-temps de la relativité restreinte : les propriétés géométriques de cet espace correspondent à des propriétés physiques présentes dans cette théorie.
Afficher plus