Publication

Integrated modelling of H-mode pedestal and confinement in JET-ILW

Résumé

A pedestal prediction model Europed is built on the existing EPED1 model by coupling it with core transport simulation using a Bohm-gyroBohm transport model to self-consistently predict JET-ILW power scan for hybrid plasmas that display weaker power degradation than the IPB98 (y, 2) scaling of the energy confinement time. The weak power degradation is reproduced in the coupled core-pedestal simulation. The coupled core-pedestal model is further tested for a 3.0 MA plasma with the highest stored energy achieved in JET-ILW so far, giving a prediction of the stored plasma energy within the error margins of the measured experimental value. A pedestal density prediction model based on the neutral penetration is tested on a JET-ILW database giving a prediction with an average error of 17% from the experimental data when a parameter taking into account the fuelling rate is added into the model. However the model fails to reproduce the power dependence of the pedestal density implying missing transport physics in the model. The future JET-ILW deuterium campaign with increased heating power is predicted to reach plasma energy of 11 MJ, which would correspond to 11-13 MW of fusion power in equivalent deuterium-tritium plasma but with isotope effects on pedestal stability and core transport ignored.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Énergie de fusion nucléaire
vignette| L'expérience de fusion magnétique du Joint European Torus (JET) en 1991. L'énergie de fusion nucléaire est une forme de production d'électricité du futur qui utilise la chaleur produite par des réactions de fusion nucléaire. Dans un processus de fusion, deux noyaux atomiques légers se combinent pour former un noyau plus lourd, tout en libérant de l'énergie. De telles réactions se produisent en permanence au sein des étoiles. Les dispositifs conçus pour exploiter cette énergie sont connus sous le nom de réacteurs à fusion nucléaire.
Fusion par confinement magnétique
La fusion par confinement magnétique (FCM) est une méthode de confinement utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées pour la fusion nucléaire. De puissants champs électromagnétiques sont employés pour atteindre ces conditions. Le combustible doit au préalable être converti en plasma, celui-ci se laisse ensuite influencer par les champs magnétiques. Il s'agit de la méthode utilisée dans les tokamaks toriques et sphériques, les stellarators et les machines à piège à miroirs magnétiques.
Fusion par confinement inertiel
La fusion par confinement inertiel est une méthode utilisée pour porter une quantité de combustible aux conditions de température et de pression désirées en vue d'atteindre la fusion nucléaire. Le confinement du combustible de fusion est réalisé à l'aide de forces inertielles. Cette méthode peut être mise en œuvre grâce à des techniques diverses, dont : striction axiale ; confinement inertiel par laser. D'autres méthodes permettent de réaliser le confinement du combustible nécessaire à la fusion, notamment le confinement magnétique, le confinement électrostatique et la fusion catalysée par muons.
Afficher plus
Publications associées (61)

JET D-T scenario with optimized non-thermal fusion

Haomin Sun, Michele Marin, Javier García Hernández, Mikhail Maslov

In JET deuterium-tritium (D-T) plasmas, the fusion power is produced through thermonuclear reactions and reactions between thermal ions and fast particles generated by neutral beam injection (NBI) heating or accelerated by electromagnetic wave heating in t ...
Bristol2023

Full-discharge simulation and optimization with the RAPTOR code, from present tokamaks to ITER and DEMO

Simon Van Mulders

Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
EPFL2023

The JET hybrid scenario in Deuterium, Tritium and Deuterium-Tritium

Haomin Sun, Javier García Hernández, Mikhail Maslov, Matteo Fontana

The JET hybrid scenario has been developed from low plasma current carbon wall discharges to the record-breaking Deuterium-Tritium plasmas obtained in 2021 with the ITER-like Be/W wall. The development started in pure Deuterium with refinement of the plasm ...
Bristol2023
Afficher plus
MOOCs associés (8)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.