Espace à quatre dimensionsframe|L'équivalent en quatre dimensions du cube est le tesseract. On le voit ici en rotation, projeté dans l'espace usuel (les arêtes représentées comme des tubes bleus sur fond noir).|alt=Animation d'un tesseract (les arêtes représentées comme des tubes bleus sur fond noir). En mathématiques, et plus spécialement en géométrie, l'espace à quatre dimensions (souvent abrégé en 4D ; on parlera par exemple de rotations en 4D) est une extension abstraite du concept de l'espace usuel vu comme espace à trois dimensions : tandis que l'espace tridimensionnel nécessite la donnée de trois nombres, appelés dimensions, pour décrire la taille ou la position des objets, l'espace à quatre dimensions en nécessite quatre.
Mécanique (science)vignette|Gyroscope. Le gyroscope tient en équilibre sur la pointe fixe par le jeu des forces mécaniques (en particulier le couple de rappel) engendrées par la rotation rapide du disque au centre. La mécanique (du grec ancien , « l'art mécanique ») est une branche de la physique dont l'objet est l'étude du mouvement, des déformations ou des états d'équilibre des systèmes physiques. Cette science vise ainsi à décrire les mouvements de différentes sortes de corps, depuis les particules subatomiques avec la mécanique quantique, jusqu'aux galaxies avec la mécanique céleste.
Identification (statistiques)En statistiques et en économétrie, l'identification (ou identifiabilité) est une propriété d'un modèle statistique. En statistiques, on dit qu'un modèle est identifiable s'il est possible d'apprendre la vraie valeur des paramètres à partir d'un nombre infini d'observations. On considère le modèle statistique : avec : l'espace de réalisation des variables aléatoires l'espace des valeurs possibles pour le paramètre une loi de probabilité de densité On définit alors la fonction de vraisemblance comme : On dit
Mathématiques de la relativité généraleLes mathématiques de la relativité générale se réfèrent à différentes structures et techniques mathématiques utilisées par la théorie de la relativité générale d'Albert Einstein. Les principaux outils utilisés dans cette théorie géométrique de la gravitation sont les champs tensoriels définis sur une variété pseudo-riemannienne représentant l'espace-temps.
Théorème de Frobenius (géométrie différentielle)Le théorème de Frobenius donne une condition nécessaire et suffisante d'intégrabilité locale d'un système d'équations aux dérivées partielles du premier ordre dont le membre de droite dépend des variables, des inconnues, mais ne dépend pas de dérivées partielles de ces inconnues : un tel système d'équations aux dérivées partielles est appelé un « système de Pfaff ». Les fonctions du second membre sont supposées seulement de classe , ce qui rend impossible l'application du théorème de Cauchy-Kowalevski, qui suppose ces fonctions analytiques.