Résumé
frame|L'équivalent en quatre dimensions du cube est le tesseract. On le voit ici en rotation, projeté dans l'espace usuel (les arêtes représentées comme des tubes bleus sur fond noir).|alt=Animation d'un tesseract (les arêtes représentées comme des tubes bleus sur fond noir). En mathématiques, et plus spécialement en géométrie, l'espace à quatre dimensions (souvent abrégé en 4D ; on parlera par exemple de rotations en 4D) est une extension abstraite du concept de l'espace usuel vu comme espace à trois dimensions : tandis que l'espace tridimensionnel nécessite la donnée de trois nombres, appelés dimensions, pour décrire la taille ou la position des objets, l'espace à quatre dimensions en nécessite quatre. Par exemple, une boîte rectangulaire est caractérisée par sa longueur, sa largeur et sa hauteur ; cela amène au système des coordonnées cartésiennes, souvent notées par les lettres x, y et z. Dans l'espace à quatre dimensions, les points sont de même repérés par quatre coordonnées ; la quatrième, qui est le plus souvent notée t ou w, correspond à une nouvelle direction, perpendiculaire à toutes les directions de notre espace. L'idée d'une quatrième dimension (alors identifiée au temps) apparaît au milieu du , proposée par d'Alembert et rendue rigoureuse par Lagrange, mais ce n'est qu'un siècle plus tard qu'une véritable géométrie de l'espace à quatre dimensions est développée par divers auteurs, avant d'être complètement formalisée par Bernhard Riemann en 1854. Les outils conceptuels ainsi créés permettent en particulier de classifier complètement les formes géométriques en quatre dimensions analogues aux formes traditionnelles de l'espace usuel, comme les polyèdres ou les cylindres. L'utilisation de la quatrième dimension (et de dimensions supérieures) est devenue indispensable à la physique moderne, de la théorie de la relativité (dont le cadre géométrique est l'espace de Minkowski, un espace à quatre dimensions muni d'une géométrie non euclidienne) jusqu'à la physique quantique.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées (707)
Concepts associés (23)
Regular 4-polytope
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Flatland
Flatland (également publiée, en France, sous le nom de Flatland ou Le Plat pays, ou plus récemment Flatland : Fantaisie en plusieurs dimensions) est une allégorie publiée en 1884, où l'auteur, Edwin Abbott Abbott, donne vie aux dimensions géométriques, le point, la ligne et les surfaces, avant d'en arriver à faire découvrir l'univers des volumes par un carré. Cette allégorie n'est pas sans rappeler la sortie de la caverne, voire le cheminement de Don Quichotte, l'hidalgo de Cervantes.
Hyperbolic orthogonality
In geometry, the relation of hyperbolic orthogonality between two lines separated by the asymptotes of a hyperbola is a concept used in special relativity to define simultaneous events. Two events will be simultaneous when they are on a line hyperbolically orthogonal to a particular time line. This dependence on a certain time line is determined by velocity, and is the basis for the relativity of simultaneity. Two lines are hyperbolic orthogonal when they are reflections of each other over the asymptote of a given hyperbola.
Afficher plus
Cours associés (32)
DH-406: Machine learning for DH
This course aims to introduce the basic principles of machine learning in the context of the digital humanities. We will cover both supervised and unsupervised learning techniques, and study and imple
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
ME-428: Data-driven design & fabrication methods
There is an increasing need for data-driven methods for automated design and fabrication of complex mechanical systems. This course covers methods for encoding the design space, optimization and sear
Afficher plus
Séances de cours associées (122)
Équivalence statique : forces et moments
Explore l'équivalence statique des forces, en remplaçant les forces distribuées par des forces concentrées et en calculant les composantes cartésiennes des forces et des moments.
Géométrie: Eléments euclidiens & Vitruve
Explore la première proposition d'Euclid, la symétrie antique, et les figures architecturales de Vitruve.
Analyse des données textuelles: réduction de la classification et de la dimensionnalité
Explore la classification des données textuelles, en se concentrant sur des méthodes telles que les bayes naïques et les techniques de réduction de la dimensionnalité telles que l'analyse des composantes principales.
Afficher plus
MOOCs associés (1)
Introduction to optimization on smooth manifolds: first order methods
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).