MATHICSE Technical Report : RANDOM TIME STEP PROBABILISTIC METHODS FOR UNCERTAINTY QUANTIFICATION IN CHAOTIC AND GEOMETRIC NUMERICAL INTEGRATION
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this project, we study and compare two methods to solve stochastic ordinary differential equations. The first is the Monte Carlo method and the second uses Polynomial Chaos. In the first part, we will solve a stochastic ordinary differential equation by ...
The 3DVAR filter is prototypical of methods used to combine observed data with a dynamical system, online, in order to improve estimation of the state of the system. Such methods are used for high dimensional data assimilation problems, such as those arisi ...
Several computational challenges arise when evaluating the failure probability of a given system in the context of risk prediction or reliability analysis. When the dimension of the uncertainties becomes high, well established direct numerical methods can ...
Multiscale differential equations arise in the modeling of many important problems in the science and engineering. Numerical solvers for such problems have been extensively studied in the deterministic case. Here, we discuss numerical methods for (mean-squ ...
The bounded confidence model of opinion dynamics, introduced by Deffuant et al, is a stochastic model for the evolution of continuous-valued opinions within a finite group of peers. We prove that, as time goes to infinity, the opinions evolve globally into ...
In this work we compare numerically different families of nested quadrature points, i.e. the classic Clenshaw{Curtis and various kinds of Leja points, in the context of the quasi-optimal sparse grid approximation of random elliptic PDEs. Numerical evidence ...
We consider a method to efficiently evaluate in a real-time context an output based on the numerical solution of a partial differential equation depending on a large number of parameters. We state a result allowing to improve the computational performance ...
We present a novel, cell-local shock detector for use with discontinuous Galerkin (DG) methods. The output of this detector is a reliably scaled, element-wise smoothness estimate which is suited as a control input to a shock capture mechanism. Using an art ...
We discuss adaptive sparse grid algorithms for stochastic differential equations with a particular focus on applications to electromagnetic scattering by structures with holes of uncertain size, location, and quantity. Stochastic collocation (SC) methods a ...
We consider the long time behavior of the semidiscrete scheme for the Perona-Malik equation in one dimension. We prove that approximated solutions converge, in a slow time scale, to solutions of a limit problem. This limit problem evolves piecewise constan ...