RAQ: Relationship-Aware Graph Querying in Large Networks
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Many graph mining and network analysis problems rely on the availability of the full network over a set of nodes. But inferring a full network is sometimes non-trivial if the raw data is in the form of many small {\em patches} or subgraphs, of the true net ...
Over the past few decades we have been experiencing an explosion of information generated by large networks of sensors and other data sources. Much of this data is intrinsically structured, such as traffic evolution in a transportation network, temperature ...
Graph processing systems are used in a wide variety of fields, ranging from biology to social networks.
Algorithms to mine graphs incur many random accesses, and the sparse nature of the graphs of interest, exacerbates this. As DRAM sustains high bandwidt ...
This paper formulates a multitask optimization problem where agents in the network have individual objectives to meet, or individual parameter vectors to estimate, subject to a smoothness condition over the graph. The smoothness requirement softens the tra ...
A Kneser graph KG(n,k) is a graph whose vertices are in oneto-one correspondence with k -element subsets of [n], with two vertices connected if and only if the corresponding sets do not intersect. A famous result due to Lowisz states that the chromatic num ...
The current state of the art in RDF Stream Processing (RSP) proposes several models and implementations to combine Semantic Web technologies with Data Stream Management System (DSMS) operators like windows. Meanwhile, only a few solutions combine Semantic ...
Weighted undirected graphs are a simple, yet powerful way to encode structure in data. A first question we need to address regarding such graphs is how to use them effectively to enhance machine learning problems. A second but more important question is ho ...
The emerging field of graph signal processing (GSP) allows one to transpose classical signal processing operations (e.g., filtering) to signals on graphs. The GSP framework is generally built upon the graph Laplacian, which plays a crucial role in studying ...