G2-VER: Geometry Guided Model Ensemble for Video-based Facial Expression Recognition
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
In this paper, we investigate the significance of contextual information in a phoneme recognition system using the hidden Markov model - artificial neural network paradigm. Contextual information is probed at the feature level as well as at the output of t ...
Automatic recognition of gestures using computer vision is important for many real-world applications such as sign language recognition and human-robot interaction (HRI). Our goal is a real-time hand gesture-based HRI interface for mobile robots. We use a ...
This paper investigates robust privacy-sensitive audio features for speaker diarization in multiparty conversations: ie., a set of audio features having low linguistic information for speaker diarization in a single and multiple distant microphone scenario ...
Automatic facial expression analysis promises to be a game- changer in many application areas. But before this promise can be fulfilled, it has to move from the laboratory into the wild. The Emotion Recognition in the Wild challenge pro- vides an opportuni ...
In this paper, we investigate employment of discriminatively trained acoustic features modeled by Subspace Gaussian Mixture Models (SGMMs) for Rich Transcription meeting recognition. More specifically, first, we focus on exploiting various types of complex ...
In this paper, we investigate employment of discriminatively trained acoustic features modeled by Subspace Gaussian Mixture Models (SGMMs) for Rich Transcription meeting recognition. More specifically, first, we focus on exploiting various types of complex ...
We propose a novel fully automatic framework to detect which meeting participant is currently holding the conversational floor and when the current speaker turn is going to finish. Two sets of experiments were conducted on a large collection of multiparty ...
Phone posteriors has recently quite often used (as additional features or as local scores) to improve state-of-the-art automatic speech recognition (ASR) systems. Usually, better phone posterior estimates yield better ASR performance. In the present paper ...
In this paper we propose a new technique for robust keyword spotting that uses bidirectional Long Short-Term Memory (BLSTM) recurrent neural nets to incorporate contextual information in speech decoding. Our approach overcomes the drawbacks of generative H ...
We present a data-driven approach to weighting the temporal context of signal energy to be used in a simple speech/non-speech detector (SND). The optimal weights are obtained using linear discriminant analysis (LDA). Regularization is performed to handle n ...