Publication

Max-pooling convolutional neural networks for vision-based hand gesture recognition

2011
Article de conférence
Résumé

Automatic recognition of gestures using computer vision is important for many real-world applications such as sign language recognition and human-robot interaction (HRI). Our goal is a real-time hand gesture-based HRI interface for mobile robots. We use a state-of-the-art big and deep neural network (NN) combining convolution and max-pooling (MPCNN) for supervised feature learning and classification of hand gestures given by humans to mobile robots using colored gloves. The hand contour is retrieved by color segmentation, then smoothened by morphological image processing which eliminates noisy edges. Our big and deep MPCNN classifies 6 gesture classes with 96% accuracy, nearly three times better than the nearest competitor. Experiments with mobile robots using an ARM 11 533MHz processor achieve real-time gesture recognition performance. © 2011 IEEE.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (33)
Réseau neuronal convolutif
En apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Apprentissage profond
L'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Types of artificial neural networks
There are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Afficher plus
Publications associées (157)

Enabling Uncertainty Estimation in Iterative Neural Networks

Pascal Fua, Nikita Durasov, Doruk Oner, Minh Hieu Lê

Turning pass-through network architectures into iterative ones, which use their own output as input, is a well-known approach for boosting performance. In this paper, we argue that such architectures offer an additional benefit: The convergence rate of the ...
2024

Breaking the Curse of Dimensionality in Deep Neural Networks by Learning Invariant Representations

Leonardo Petrini

Artificial intelligence, particularly the subfield of machine learning, has seen a paradigm shift towards data-driven models that learn from and adapt to data. This has resulted in unprecedented advancements in various domains such as natural language proc ...
EPFL2023

Deep Learning Generalization with Limited and Noisy Labels

Mahsa Forouzesh

Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
EPFL2023
Afficher plus
MOOCs associés (32)
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Instructional Design with Orchestration Graphs
Discover a visual language for designing pedagogical scenarios that integrate individual, team and class wide activities.
Thymio: un robot pour se former à l'informatique
On propose dans ce MOOC de se former à et avec Thymio : apprendre à programmer le robot Thymio et ce faisant, s’initier à l'informatique et la robotique.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.