Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Arterial rupture in horses has been observed during exercise, after phenylephrine administration or during parturition (uterine artery). In human pathophysiological research, the use of computer models for studying arterial hemodynamics and understanding normal and abnormal characteristics of arterial pressure and flow waveforms is very common. The objective of this research was to develop a computer model of the equine arterial circulation, in order to study local intra-arterial pressures and flow dynamics in horses. Morphologically, large differences exist between human and equine aortic arch and arterial branching patterns. Development of the present model was based on post-mortem obtained anatomical data of the arterial tree (arterial lengths, diameters and branching angles); in vivo collected ultrasonographic flow profiles from the common carotid artery, external iliac artery, median artery and aorta; and invasively collected pressure curves from carotid artery and aorta. These data were used as input for a previously validated (in humans) 1D arterial network model. Data on terminal resistance and arterial compliance parameters were tuned to equine physiology. Given the large arterial diameters, Womersley theory was used to compute friction coefficients, and the input into the arterial system was provided via a scaled time-varying elastance model of the left heart. Outcomes showed plausible predictions of pressure and flow waveforms throughout the considered arterial tree. Simulated flow waveform morphology was in line with measured flow profiles. Consideration of gravity further improved model based predicted waveforms. Derived flow waveform patterns could be explained using wave power analysis. The model offers possibilities as a research tool to predict changes in flow profiles and local pressures as a result of strenuous exercise or altered arterial wall properties related to age, breed or gender.
Nikolaos Stergiopulos, Georgios Rovas, Vasiliki Bikia
Nikolaos Stergiopulos, Fabiana Pereira Da Costa Fraga, Allancer Divino De Carvalho Nunes
Alfio Quarteroni, Francesco Regazzoni, Christian Vergara