Opération unaireEn mathématiques et en programmation informatique, une opération unaire, aussi appelée une fonction monadique, est une opération à un opérande ou une fonction à un seul argument. Valeur absolue ( |x| ) d'un nombre réel. Opposé ( -x ) d'un nombre réel. Carré ( x2 ) d'un nombre réel. Inverse ( g-1 ) d'un élément d'un groupe. Exponentielle, . Exponentielle de base a, . Dans la famille des langages C, les opérations suivantes sont unaires : Incrément : ++x, x++ Décrément : −−x, x−− Adresse ou référence : &x In
Longueur de description minimaleLa longueur de description minimale ou LDM (MDL pour Minimum Description Length en anglais) est un concept inventé par Jorma Rissanen en 1978 et utilisé en théorie de l'information et en compression de données. Le principe est basé sur l'affirmation suivante : toute régularité dans un ensemble de données peut être utilisée afin de compresser l'information, c'est-à-dire l'exprimer à l'aide d'un nombre réduit de symboles. Théorie de l'information Jorma Rissanen, « Modeling by shortest data description », Automatica, vol 14, No 5, pp.
Minimum message lengthMinimum message length (MML) is a Bayesian information-theoretic method for statistical model comparison and selection. It provides a formal information theory restatement of Occam's Razor: even when models are equal in their measure of fit-accuracy to the observed data, the one generating the most concise explanation of data is more likely to be correct (where the explanation consists of the statement of the model, followed by the lossless encoding of the data using the stated model).
Algèbre de HeytingEn mathématiques, une algèbre de Heyting est une structure algébrique introduite en 1930 par le mathématicien néerlandais Arend Heyting pour rendre compte formellement de la logique intuitionniste de Brouwer, alors récemment développée. Les algèbres de Heyting sont donc pour la logique intuitionniste analogue à ce que sont des algèbres de Boole pour la logique classique : un modèle formel permettant d'en fixer les propriétés.
Functional completenessIn logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates.