ComputationA computation is any type of arithmetic or non-arithmetic calculation that is well-defined. Common examples of computations are mathematical equations and computer algorithms. Mechanical or electronic devices (or, historically, people) that perform computations are known as computers. The study of computation is the field of computability, itself a sub-field of computer science. The notion that mathematical statements should be ‘well-defined’ had been argued by mathematicians since at least the 1600s, but agreement on a suitable definition proved elusive.
Matrice symétriquevignette|Matrice 5x5 symétrique. Les coefficients égaux sont représentés par la même couleur. En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que a = a pour tous i et j compris entre 1 et n, où les a sont les coefficients de la matrice et n est son ordre. Les coefficients d'une matrice symétrique sont symétriques par rapport à la diagonale principale (du coin en haut à gauche jusqu'à celui en bas à droite).
Quantum complexity theoryQuantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical (i.e., non-quantum) complexity classes. Two important quantum complexity classes are BQP and QMA.
Bareiss algorithmIn mathematics, the Bareiss algorithm, named after Erwin Bareiss, is an algorithm to calculate the determinant or the echelon form of a matrix with integer entries using only integer arithmetic; any divisions that are performed are guaranteed to be exact (there is no remainder). The method can also be used to compute the determinant of matrices with (approximated) real entries, avoiding the introduction of any round-off errors beyond those already present in the input.
Théorème d'approximation de DirichletLe théorème d'approximation de Dirichlet est le résultat d'approximation diophantienne simultanée de d réels suivant : dont le cas particulier N = Q avec Q entier se démontre par le principe des tiroirs de Dirichlet, ou le résultat suivant (plus général) : qui utilise un théorème de Minkowski ou de Blichfeldt. Ce théorème est appliqué notamment en théorie des nombres (approximations diophantiennes, théorie des séries de Dirichlet) et dans la théorie des fonctions presque périodiques.
Theory of computationIn theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree (e.g., approximate solutions versus precise ones). The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".
Complexité en moyenne des algorithmesLa complexité en moyenne d'un algorithme est la quantité d'une ressource donnée, typiquement le temps, utilisée par l'algorithme lors de son exécution pour traiter une entrée tirée selon une distribution donnée. Il s'agit par conséquent d'une moyenne de la complexité, pondérée entre les différentes entrées possibles selon la distribution choisie. Le plus souvent, on ne précise pas la distribution et on utilise implicitement une distribution uniforme (i.e.
Matrice (mathématiques)thumb|upright=1.5 En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire. Toutes les disciplines étudiant des phénomènes linéaires utilisent les matrices. Quant aux phénomènes non linéaires, on en donne souvent des approximations linéaires, comme en optique géométrique avec les approximations de Gauss.
Option exotiqueIn finance, an exotic option is an option which has features making it more complex than commonly traded vanilla options. Like the more general exotic derivatives they may have several triggers relating to determination of payoff. An exotic option may also include a non-standard underlying instrument, developed for a particular client or for a particular market. Exotic options are more complex than options that trade on an exchange, and are generally traded over the counter.
Analytic function of a matrixIn mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix, which is involved in the closed-form solution of systems of linear differential equations. There are several techniques for lifting a real function to a square matrix function such that interesting properties are maintained. All of the following techniques yield the same matrix function, but the domains on which the function is defined may differ.