TritiumLe tritium (/tʁi.sjɔm/ ou /tʁi.tjɔm/), noté H ou T, est l'isotope de l'hydrogène dont le nombre de masse est égal à 3 : son noyau atomique, appelé triton, compte et avec un spin 1/2+ pour une masse atomique de . Il est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Il a été mis en évidence en 1934 par Ernest Rutherford, dans la réaction de fusion nucléaire . À la différence du protium H et du deutérium H, ce nucléide est radioactif et se désintègre en (He) avec une demi-vie de .
Hélium 3L’hélium 3, noté He, est l'isotope de l'hélium dont le nombre de masse est égal à 3 : son noyau atomique compte deux protons et un seul neutron, avec un spin 1/2+ pour une masse atomique de . Cet isotope stable — non radioactif — est caractérisé par un excès de masse de et une énergie de liaison nucléaire par nucléon de . Recherché pour ses applications potentielles en fusion nucléaire, est rare sur Terre, où il constitue environ de l'hélium du manteau ; dans l'atmosphère terrestre, on compte d'hélium, dont représente seulement , soit une fraction d'à peine 7,2 de l'atmosphère dans son ensemble.
NeutronLe neutron est une particule subatomique de charge électrique nulle. Les neutrons sont présents dans le noyau des atomes, liés avec des protons par l'interaction forte. Alors que le nombre de protons d'un noyau détermine son élément chimique, le nombre de neutrons détermine son isotope. Les neutrons liés dans un noyau atomique sont en général stables mais les neutrons libres sont instables : ils se désintègrent en un peu moins de 15 minutes (880,3 secondes). Les neutrons libres sont produits dans les opérations de fission et de fusion nucléaires.
Eau lourdeL'eau lourde ou oxyde de deutérium DO (ou HO) est constituée des mêmes éléments chimiques que l'eau ordinaire (ou HO), mais ses atomes d'hydrogène sont des isotopes lourds, du deutérium (le noyau de deutérium comporte un neutron en plus du proton présent dans tout atome d’hydrogène). C'est Gilbert Lewis qui isola le premier échantillon d'eau lourde pure, en 1933. L'eau semi-lourde, ou eau deutérée, est l'oxyde mixte HDO (ou HHO). Dans les océans, les mers et les eaux de surface, elle est bien plus abondante que l'eau lourde.
Générateur de neutronsvignette|Un physicien nucléaire de l'INL se prépare à réaliser une expérience à l'aide d'un générateur de neutrons. Un générateur de neutrons est une machine source de neutrons, permettant de produire un faisceau de neutrons monoénergétiques. Il se distingue des sources isotopiques de neutrons par sa capacité à produire des neutrons « à la demande » dans diverses configurations : faisceaux pulsés, énergies différentes Les générateurs de neutrons sont principalement utilisés comme amorces dans les armes nucléaires et servent également à analyser la matière par les différents rayonnements induits par les neutrons lorsqu'ils rencontrent des atomes (prospection minière, détection d'explosifs.
Plasma-facing materialIn nuclear fusion power research, the plasma-facing material (or materials) (PFM) is any material used to construct the plasma-facing components (PFC), those components exposed to the plasma within which nuclear fusion occurs, and particularly the material used for the lining the first wall or divertor region of the reactor vessel. Plasma-facing materials for fusion reactor designs must support the overall steps for energy generation, these include: Generating heat through fusion, Capturing heat in the first wall, Transferring heat at a faster rate than capturing heat.
Activation neutroniqueL’activation neutronique est le processus par lequel un flux neutronique induit de la radioactivité dans les matériaux qu'il traverse (phénomène de radioactivation). Tout matériau traversé par un flux de neutrons subit progressivement une transmutation par capture neutronique qui rend une partie de ses noyaux radioactifs, et la durée de vie de cette radioactivité impose généralement de le gérer par la suite comme déchet radioactif (le plus souvent comme déchet de faible activité).
Capture neutroniqueEn physique nucléaire, la capture neutronique est le processus par lequel un noyau capture un neutron sans se désintégrer (et émet un rayonnement gamma pour évacuer l'énergie en excès). Ils fusionnent pour former un noyau plus lourd. Comme les neutrons n'ont pas de charge électrique, ils peuvent entrer dans un noyau plus facilement que les particules chargées positivement, qui sont repoussées électrostatiquement. La capture de neutrons joue un rôle important dans la nucléosynthèse cosmique des éléments lourds.
Poison à neutronsUn poison neutronique (également appelé « absorbeur de neutrons » ou « poison nucléaire ») est une substance ayant une grande section d'absorption de neutrons, et qui a de ce fait un impact significatif dans le bilan neutronique d'un réacteur nucléaire. Dans les réacteurs nucléaires, l'absorption des neutrons a notamment un effet d'empoisonnement du réacteur. Cet empoisonnement est principalement dû à la capture de neutrons par des produits de fission de demi-vie courte dont le principal est le xénon 135 ou par des produits de fission de demi-vie plus longue ou stable comme le samarium 149 et le gadolinium 157.
Spallation des rayons cosmiquesLa spallation des rayons cosmiques est un mécanisme de nucléosynthèse où la grande énergie cinétique des rayons cosmiques (essentiellement des protons) brise des nucléides croisant leur trajectoire et en forment de nouveaux (généralement de masse atomique plus petite). La présence des éléments légers tels que le lithium (dont un petit pourcentage s'est formé au cours de la nucléosynthèse primordiale), le béryllium et le bore, fut longtemps une énigme pour les astrophysiciens étant donné que la nucléosynthèse primordiale et les réactions nucléaires du cœur des étoiles sont plus propices à les détruire qu'à les synthétiser.