Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Dronevignette|Un Parrot AR.Drone devant un Dassault Rafale. vignette|Un drone de reconnaissance EADS Harfang lors du Salon du Bourget de 2007. vignette|Drone civil OnyxStar Fox-C8 XT en vol. vignette|Drone de combat russe lourd Soukhoï S-70 Okhotnik-B Les drones (//, du mot anglais signifiant « faux bourdon ») désignent des engins commandés à distance, dont le pilotage est automatique ou télécommandé, qu''ils soient volants, terrestres ou encore amphibies , à usage civil ou au profit des forces armées ou de sécurité d'un État.
Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau neuronal résidueldroite|vignette| Forme canonique d'un réseau neuronal résiduel. Une couche l − 1 est ignoré sur l'activation de l − 2. Un réseau neuronal résiduel ( ResNet ) est un réseau neuronal artificiel (ANN). Il s'agit d'une variante du HighwayNet , le premier réseau neuronal à action directe très profond avec des centaines de couches, beaucoup plus profond que les réseaux neuronaux précédents. Les sauts de connexion ou "raccourcis" sont utilisés pour passer par-dessus certaines couches ( les HighwayNets peuvent également avoir des poids pour les saut eux-mêmes, grâce à une matrice de poids supplémentaire pour leurs portes).
Stratégie de régulationUne stratégie (ou topologie) de régulation est, pour un procédé industriel, l'organisation du système de contrôle-commande en vue de maintenir une grandeur physique dans une plage de tolérance donnée. Le choix de stratégie est très important dans les industries de transformation (par exemple les industries chimiques, papetières, agroalimentaires) en raison de la variabilité d'un nombre élevé de grandeurs physiques incidentes (dites « perturbations ») qui y sont présentes.
Pilote (aviation)En aviation, un ou une pilote est une personne qui est aux commandes d'un aéronef (avions, ULM, planeurs, parapentes, deltaplanes, ballons, autogires, hélicoptères ou drones). On parle de pilote de ligne (qui pilote un avion de ligne), de pilote de chasse (qui pilote un avion de chasse) Il ou elle fait partie du personnel navigant technique de l'aéronef. Aux débuts de l'aviation le pilote était souvent appelé aviateur. Ce terme dérivé du mot avion (néologisme créé en 1875 par Clément Ader) a été repris dans différentes langues.
Supervision (informatique)La supervision est une technique industrielle de suivi et de pilotage informatique de procédés de fabrication automatisés. La supervision concerne l'acquisition de données (mesures, alarmes, retour d'état de fonctionnement) et des paramètres de commande des processus généralement confiés à des automates programmables. Dans l'informatique, la supervision est la surveillance du bon fonctionnement d’un système ou d’une activité. À ne pas confondre avec l'hypervision, qui elle correspond à la centralisation des outils de supervision, d’infrastructure, d'applications et de référentiels (ex.
Reconnaissance automatique de la parolevignette|droite|upright=1.4|La reconnaissance vocale est habituellement traitée dans le middleware ; les résultats sont transmis aux applications utilisatrices. La reconnaissance automatique de la parole (souvent improprement appelée reconnaissance vocale) est une technique informatique qui permet d'analyser la voix humaine captée au moyen d'un microphone pour la transcrire sous la forme d'un texte exploitable par une machine.