Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose two decompositions that help to summarize and describe high-dimensional tail dependence within the framework of regular variation. We use a transformation to define a vector space on the positive orthant and show that transformed-linear operations applied to regularly-varying random vectors preserve regular variation. We summarize tail dependence via a matrix of pairwise tail dependence metrics that is positive semidefinite; eigendecomposition allows one to interpret tail dependence in terms of the resulting eigenbasis. This matrix is completely positive, and one can easily construct regularly-varying random vectors that share the same pairwise tail dependencies. We illustrate our methods with Swiss rainfall and financial returns data.