Models of communicationModels of communication are simplified representations of the process of communication. Most models try to describe both verbal and non-verbal communication and often understand it as an exchange of messages. Their function is to give a compact overview of the complex process of communication. This helps researchers formulate hypotheses, apply communication-related concepts to real-world cases, and test predictions. Despite their usefulness, many models are criticized based on the claim that they are too simple because they leave out essential aspects.
Traitement de la paroleLe traitement de la parole est une discipline technologique dont l'objectif est la captation, la transmission, l'identification et la synthèse de la parole. Dans ce domaine, on peut définir la parole comme un texte oral. On s'intéresse à l'intelligibilité, c'est-à-dire à la possibilité, pour la personne qui écoute, de comprendre sans erreur le texte émis ; à l'amélioration de l'intelligibilité quand le signal est dégradé ; à l'identification de la personne qui parle ; à l'établissement automatique d'un texte écrit à partir de la parole ; à la synthèse de la parole à partir d'un texte écrit.
Scanner radioUn scanner radio est un récepteur radio qui permet de balayer des fréquences radio. thumb|upright=0.7|écoute de la météo aéronautique sur l'ATIS de Paris Orly avec un récepteur scanner bande aéronautique. thumb|upright=0.7|écoute de la radiodiffusion avec un récepteur scanner. La plupart des récepteurs radio sont normalement fixés sur une seule fréquence. Toutefois, un récepteur peut être conçu pour balayer continuellement les différentes fréquences disponibles (dans un groupe ou une bande de fréquence) afin de permettre d'écouter un échange dont on ne sait pas - a priori - quelle fréquence il emploiera.
Peigne de Diracvignette|La distribution peigne de Dirac est une série infinie de distributions de Dirac espacées de T.|208x208pxEn mathématiques, la distribution peigne de Dirac, ou distribution cha (d'après la lettre cyrillique Ш), est une somme de distributions de Dirac espacées de T : Cette distribution périodique est particulièrement utile dans les problèmes d'échantillonnage, remplacement d'une fonction continue par une suite de valeurs de la fonction séparées par un pas de temps T (voir Théorème d'échantillonnage de Nyquist-Shannon).