Résumé
vignette|La distribution peigne de Dirac est une série infinie de distributions de Dirac espacées de T.|208x208pxEn mathématiques, la distribution peigne de Dirac, ou distribution cha (d'après la lettre cyrillique Ш), est une somme de distributions de Dirac espacées de T : Cette distribution périodique est particulièrement utile dans les problèmes d'échantillonnage, remplacement d'une fonction continue par une suite de valeurs de la fonction séparées par un pas de temps T (voir Théorème d'échantillonnage de Nyquist-Shannon). Cette distribution est T-périodique et tempérée, comme dérivée d'une fonction constante par morceaux ; on peut donc la développer en série de Fourier : Il faut cependant comprendre cette série comme convergente au sens des distributions ; en effet, le terme général ne converge pas vers 0. La propriété fondamentale de la distribution de Dirac conduit à la propriété fondamentale du peigne Le calcul approché d'une intégrale par la méthode des rectangles est équivalent au calcul de l'intégrale de la fonction multipliée par un peigne de Dirac. Il faut préciser que la formule ci-dessus n'est pas correcte en termes de dimensions dans les problèmes d'échantillonnage où la variable t est généralement le temps. Pour cette raison, le peigne défini ci-dessus est alors multiplié par la largeur τ de l'impulsion d'échantillonnage. Le signal délivré en sortie de l'échantillonneur est une suite d'impulsions d'amplitude f(nT) et de largeur τ (avec ). peut alors s'écrire : L'échantillonneur de période T ainsi réalisé répond, au facteur τ près, à la définition de l'opérateur mathématique qui, à toute fonction f(t), fait correspondre une fonction f*(t) définie par : expression dans laquelle désigne une impulsion de Dirac apparaissant à l'instant nT. Ainsi, le signal généré en sortie de l'échantillonneur est : Par l'utilisation de la formule sommatoire de Poisson, on peut montrer que la transformée de Fourier du peigne de Dirac en temps est également un peigne de Dirac, en fréquence : Théorème d'échantillonnage de
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (7)
EE-205: Signals and systems (for EL)
Ce cours pose les bases d'un concept essentiel en ingénierie : la notion de système. Plus spécifiquement, le cours présente la théorie des systèmes linéaires invariants dans le temps (SLIT), qui sont
MATH-410: Riemann surfaces
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
MICRO-310(b): Signals and systems I (for SV)
Présentation des concepts et des outils de base pour l'analyse et la caractérisation des signaux, la conception de systèmes de traitement et la modélisation linéaire de systèmes pour les étudiants en
Afficher plus
Concepts associés (16)
Fonction porte
La fonction porte, généralement notée Π, est la fonction indicatrice de l'intervalle réel [–1/2, 1/2], c'est-à-dire la fonction mathématique par laquelle un nombre réel a une nulle, sauf s'il est compris entre –1/2 et 1/2, auquel cas son image vaut 1. Son graphe a une forme similaire à celle d'une porte, d'où son nom. La fonction porte , définie sur les réels et à valeurs dans , est définie par : Par généralisation, on appelle également fonction porte toute fonction déduite par translation et/ou dilatation de la fonction définie ci-dessus.
Periodic summation
In mathematics, any integrable function can be made into a periodic function with period P by summing the translations of the function by integer multiples of P. This is called periodic summation: When is alternatively represented as a Fourier series, the Fourier coefficients are equal to the values of the continuous Fourier transform, at intervals of . That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of at constant intervals (T) is equivalent to a periodic summation of which is known as a discrete-time Fourier transform.
Formule sommatoire de Poisson
La formule sommatoire de Poisson (parfois appelée resommation de Poisson) est une identité entre deux sommes infinies, la première construite avec une fonction , la seconde avec sa transformée de Fourier . Ici, f est une fonction sur la droite réelle ou plus généralement sur un espace euclidien. La formule a été découverte par Siméon Denis Poisson. Elle, et ses généralisations, sont importantes dans plusieurs domaines des mathématiques, dont la théorie des nombres, l'analyse harmonique, et la géométrie riemannienne.
Afficher plus