Michael AtiyahSir Michael Francis Atiyah, né le à Londres et mort le , est un mathématicien anglais d'origine libanaise, fils de l'écrivain Edward Atiyah. Il est professeur à l'université d'Oxford, à l'université de Cambridge et à l'université de Princeton. Membre de la Royal Society depuis 1962, il en est président de 1990 à 1995. Il est lauréat de la médaille Fields 1966, du prix Abel 2004 et de la grande médaille 2010.
Commensurability (group theory)In mathematics, specifically in group theory, two groups are commensurable if they differ only by a finite amount, in a precise sense. The commensurator of a subgroup is another subgroup, related to the normalizer. Two groups G1 and G2 are said to be (abstractly) commensurable if there are subgroups H1 ⊂ G1 and H2 ⊂ G2 of finite index such that H1 is isomorphic to H2. For example: A group is finite if and only if it is commensurable with the trivial group. Any two finitely generated free groups on at least 2 generators are commensurable with each other.
Indicatrice de Carmichaelvignette|upright=2|Fonction λ de Carmichael : λ(n) pour 1 ≤ n ≤ 1000 (avec les valeurs de la fonction φ d'Euler en comparaison) La fonction indicatrice de Carmichael, ou indicateur de Carmichael ou encore fonction de Carmichael, notée λ, est définie sur les entiers naturels strictement positifs ; elle associe à un entier n le plus petit entier m vérifiant, pour tout entier a premier avec n, am ≡ 1 mod n. Elle est introduite par Robert Daniel Carmichael dans un article de 1910.
Théorème d'Euler (arithmétique)vignette|Leonhard Euler (1753) En mathématiques, le théorème d'Euler ou d'Euler-Fermat en arithmétique modulaire, publié en 1761 par le mathématicien suisse Leonhard Euler, s'énonce ainsi : Ce théorème est une généralisation du petit théorème de Fermat qui, lui, ne traite que le cas où n est un nombre premier. Il se démontre en remarquant que l'exposant λ(n) (appelé l'indicatrice de Carmichael de n) du groupe (Z/nZ) des inversibles de l'anneau Z/nZ est un diviseur de l'ordre φ(n) de ce groupe (cette propriété, commune à tous les groupes finis, se déduit du théorème de Lagrange sur les groupes).
Algorithme d'Euclide étenduEn mathématiques, l'algorithme d'Euclide étendu est une variante de l'algorithme d'Euclide. À partir de deux entiers a et b, il calcule non seulement leur plus grand commun diviseur (PGCD), mais aussi un de leurs couples de coefficients de Bézout, c'est-à-dire deux entiers u et v tels que au + bv = PGCD(a, b). Quand a et b sont premiers entre eux, u est alors l'inverse pour la multiplication de a modulo b (et v est de la même façon l'inverse modulaire de b, modulo a), ce qui est un cas particulièrement utile.