Michael AtiyahSir Michael Francis Atiyah (əˈtiːə; 22 April 1929 – 11 January 2019) was a British-Lebanese mathematician specialising in geometry. His contributions include the Atiyah–Singer index theorem and co-founding topological K-theory. He was awarded the Fields Medal in 1966 and the Abel Prize in 2004. Atiyah was born on 22 April 1929 in Hampstead, London, England, the son of Jean (née Levens) and Edward Atiyah. His mother was Scottish and his father was a Lebanese Orthodox Christian.
Commensurability (group theory)In mathematics, specifically in group theory, two groups are commensurable if they differ only by a finite amount, in a precise sense. The commensurator of a subgroup is another subgroup, related to the normalizer. Two groups G1 and G2 are said to be (abstractly) commensurable if there are subgroups H1 ⊂ G1 and H2 ⊂ G2 of finite index such that H1 is isomorphic to H2. For example: A group is finite if and only if it is commensurable with the trivial group. Any two finitely generated free groups on at least 2 generators are commensurable with each other.
Carmichael functionIn number theory, a branch of mathematics, the Carmichael function λ(n) of a positive integer n is the smallest positive integer m such that holds for every integer a coprime to n. In algebraic terms, λ(n) is the exponent of the multiplicative group of integers modulo n. The Carmichael function is named after the American mathematician Robert Carmichael who defined it in 1910. It is also known as Carmichael's λ function, the reduced totient function, and the least universal exponent function.
Euler's theoremIn number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem) states that, if n and a are coprime positive integers, and is Euler's totient function, then a raised to the power is congruent to 1 modulo n; that is In 1736, Leonhard Euler published a proof of Fermat's little theorem (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number.
Extended Euclidean algorithmIn arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers a and b, also the coefficients of Bézout's identity, which are integers x and y such that This is a certifying algorithm, because the gcd is the only number that can simultaneously satisfy this equation and divide the inputs. It allows one to compute also, with almost no extra cost, the quotients of a and b by their greatest common divisor.