Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Combat de robotsvignette|Deux robots en combat lors d'un événement RoboCore vignette|, deux fois champion du monde de Robot Wars Le combat de robots est un mode de compétition de robots dans lequel des machines construites sur mesure se battent en utilisant diverses méthodes pour se neutraliser mutuellement. Les machines sont généralement des véhicules télécommandés plutôt que des robots autonomes. Les compétitions de combat de robots ont fait l'objet de séries télévisées, notamment au Royaume-Uni et Battlebots : Le Choc des robots aux États-Unis.
Androïdevignette|Becoming Human sculpture androïde de Christian Ristow. L'adjectif androïde, du grec ancien (« d’homme ») et (« aspect extérieur »), désigne ce qui est de forme humaine. Un androïde est un robot construit à l'image d'un homme et par extension sémantique d'un être humain. Stricto sensu, andr désigne l'homme au sens masculin, le terme gynoïde est utilisé pour un robot à l'image d'une femme ; les termes neutres humanoïde et anthropoïde sont synonymes.
Multi-agent reinforcement learningMulti-agent reinforcement learning (MARL) is a sub-field of reinforcement learning. It focuses on studying the behavior of multiple learning agents that coexist in a shared environment. Each agent is motivated by its own rewards, and does actions to advance its own interests; in some environments these interests are opposed to the interests of other agents, resulting in complex group dynamics. Multi-agent reinforcement learning is closely related to game theory and especially repeated games, as well as multi-agent systems.
Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Robot socialvignette| Quori, une plateforme robotique socialement interactive pour l'étude de l'interaction homme-robot, Laboratoire Immersive Kinematics Un robot social est un robot autonome qui interagit et communique avec les humains ou d'autres agents physiques autonomes en suivant les comportements sociaux et les règles attachées à son rôle. Comme les autres robots, le robot social est physiquement incarné (les avatars ou les personnages sociaux synthétiques virtuels sont distincts car ils ne sont pas incarnés).
Humanoid robotA humanoid robot is a robot resembling the human body in shape. The design may be for functional purposes, such as interacting with human tools and environments, for experimental purposes, such as the study of bipedal locomotion, or for other purposes. In general, humanoid robots have a torso, a head, two arms, and two legs, though some humanoid robots may replicate only part of the body, for example, from the waist up. Some humanoid robots also have heads designed to replicate human facial features such as eyes and mouths.
Reinforcement learning from human feedbackIn machine learning, reinforcement learning from human feedback (RLHF) or reinforcement learning from human preferences is a technique that trains a "reward model" directly from human feedback and uses the model as a reward function to optimize an agent's policy using reinforcement learning (RL) through an optimization algorithm like Proximal Policy Optimization. The reward model is trained in advance to the policy being optimized to predict if a given output is good (high reward) or bad (low reward).
Developmental roboticsDevelopmental robotics (DevRob), sometimes called epigenetic robotics, is a scientific field which aims at studying the developmental mechanisms, architectures and constraints that allow lifelong and open-ended learning of new skills and new knowledge in embodied machines. As in human children, learning is expected to be cumulative and of progressively increasing complexity, and to result from self-exploration of the world in combination with social interaction.
Locomotion robotiqueLa locomotion robotique est le nom collectif des différentes méthodes que les robots utilisent pour se déplacer d'un endroit à l'autre. Les robots à roues sont généralement assez efficaces sur le plan énergétique et simples à contrôler. Toutefois, d'autres formes de locomotion peuvent être plus appropriées pour un certain nombre de raisons, par exemple pour traverser un terrain accidenté, ainsi que pour se déplacer et interagir dans des environnements humains.