Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
We propose a novel combination of the reduced basis method with low-rank tensor techniques for the efficient solution of parameter-dependent linear systems in the case of several parameters. This combination, called rb Tensor, consists of three ingredients. First, the underlying parameter-dependent operator is approximated by an explicit affine representation in a low-rank tensor format. Second, a standard greedy strategy is used to construct a problem-dependent reduced basis. Third, the associated reduced parametric system is solved fo all parameter values on a tensor grid simultaneously via a low-rank approach. This allows us to explicitly represent and store an approximate solution for all parameter values at a time. Once this approximation is available, the computation of output functionals and the evaluation of statistics of the solution becomes a cheap online task, without requiring the solution of a linear system.
Annalisa Buffa, Espen Sande, Yannis Dirk Voet
Martin Vetterli, Jayakrishnan Unnikrishnan, Saeid Haghighatshoar