**Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?**

Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.

Publication# Evaluation of a Dynamic Transfer Matrix for a Hydraulic Turbine

Résumé

It is well known that hydraulic machines experience various types of flow instabilities causing a negative influence on the system under off-design operations. The transfer matrix method correlating the flow properties in upstream and downstream of hydraulic machines is widely adopted as a first step to investigate dynamical characteristics of flow. Transfer matrix elements are the key to understand hydraulic system stability. The present study focuses on measurements of transfer matrix elements for a hydraulic turbine under cavitating and non-cavitating conditions. The oscillations of the flow rate are produced by two flow exciters located in upstream and downstream of the turbine and evaluated from the fluctuations of the pressure difference across two streamwise locations. It is shown that the transfer matrices are successfully evaluated at part load and full load operations in the presence and absence of cavitation. In particular, cavitation compliance and mass flow gain factor, which determine the dynamical response of cavitation to the change of pressure and flow rate, are calculated from the measured transfer matrix elements. The absolute value of both cavitation compliance and mass flow gain factor is found to increase with respect to the decrease of the cavitation number. The phase of the mass flow gain factor is delayed as the excitation frequency increases. This suggests that hydraulic systems may be stabilized when the oscillation frequency increases. As a result of stability analyses, it is demonstrated that the mass flow gain factor plays a crucial role, especially for full load cavitation surge.

Official source

Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Concepts associés

Chargement

Publications associées

Chargement

Concepts associés (22)

Turbine

vignette|alt=|Rotors de turbines à vapeur de la centrale nucléaire de Philippsburg.
Une turbine est un dispositif rotatif convertissant partiellement l'énergie interne d'un fluide, liquide (comme l'

Hydraulique

L'hydraulique est une technologie et une science appliquée ayant pour objet d'étude les propriétés mécaniques des liquides et des fluides.La mécanique des fluides est une science fondamentale qui co

Machine hydraulique

vignette|Des vérins hydrauliques sont visibles sur cette excavatrice.
Les machines hydrauliques sont des machines et outils utilisant l'énergie hydraulique pour effectuer un travail. Les engins de cha

Publications associées (93)

Chargement

Chargement

Chargement

François Avellan, Arthur Tristan Favrel, Christian Landry, Andres Müller, Christophe Nicolet, Keita Yamamoto

Hydraulic machines operating in a wider range are subjected to cavitation developments inducing undesirable pressure pulsations which could lead to potential instability of the power plant. The occurrence of pulsating cavitation volumes in the runner and the draft tube is considered as a mass source of the system and is depending on the cavitation compliance. This dynamic parameter represents the cavitation volume variation with the respect to a variation of pressure and defines implicitly the local wave speed in the draft tube. This parameter is also decisive for an accurate prediction of system eigen frequencies. Therefore, the local wave speed in the draft tube is intrinsically linked to the eigen frequencies of the hydraulic system. Thus, if the natural frequency of a hydraulic system can be determined experimentally, it also becomes possible to estimate a local wave speed in the draft tube with a numerical model. In the present study, the reduced scale model of a Francis turbine was investigated at off-design conditions. In order to measure the first eigenmode of the hydraulic test rig, an additional discharge was injected at the inlet of the hydraulic turbine at a variable frequency and amplitude to excite the system. Thus, with different pressure sensors installed on the test rig, the first eigenmode was determined. Then, a hydro-acoustic test rig model was developed with the In-house EPFL SIMSEN software and the local wave speed in the draft tube was adjusted to obtain the same first eigen frequency as that measured experimentally. Finally, this method was applied for different Thoma and Froude numbers at part load conditions.

The importance of renewable energy sources for the electrical power supply has grown rapidly in the past decades. Their often unpredictable nature however poses a threat to the stability of the existing electric grid. Hydroelectric powerplants play an important role in regulating the integration of renewable energy sources into the network by supplying on-demand load balancing as well as primary and secondary power network control. Therefore, the operating ranges of hydraulic machines has to be continuously extended, which potentially produces undesirable flow phenomena involving cavitation. An example is the formation of a gaseous volume in the swirling flow leaving a Francis turbine runner at off-design operating conditions. At high load, this so called vortex rope is shaped axisymmetrically and may enter a self-excited oscillation, measurable through significant fluctuations of the pressure throughout the system and the mechanical torque transferred to the generator. The main objective of the present work is the identification of the physical mechanisms governing this self-sustained, unstable behavior by measurement. Furthermore, the key parameters of numerical approaches using one-dimensional hydroacoustic flowmodels or CFD require experimental validation. For this purpose, the measurements provide a comprehensive data base of various flow and system parameters at varying operating conditions. Two test cases are studied, a small scale hydraulic circuit with a micro-turbine as well as a reduced scale physical model of an existing Francis turbine. On the first test case, the study of the flow rate fluctuations up- and downstream of the oscillating vortex rope in the draft tube, together with the volume of the cavity, revealed the destabilizing effect of the flow swirl in the draft tube inlet. The second test case accurately simulates the behavior of an actual hydraulic power plant. Investigations range from a local study of the flow field in the draft tube cone bymeans of LDV, PIV, high speed visualization and wall pressure measurements to a global analysis, considering the response of the hydraulic and mechanical system to the excitation by the vortex rope oscillation. Among the main observations is a periodical variation of the flow swirl in the draft tube, synchronized with the pressure oscillations. This is likely to be caused by a cyclically appearing volume of cavitation on the runner blades, modifying the relative flow angle at the outlet. The interaction of the blade cavitation and the vortex rope oscillation via the flow swirl is found to play a crucial role in the occurrence of self-excited pressure oscillations in Francis turbines.

François Avellan, Arthur Tristan Favrel, Christian Landry, Christophe Nicolet, Keita Yamamoto

Hydraulic machines operating in a wider range are subjected to cavitation developments inducing undesirable pressure pulsations which could lead to potential instability of the power plant. The occurrence of pulsating cavitation volumes in the runner and the draft tube is considered as a mass source of the system and is depending on the cavitation compliance. This dynamic parameter represents the cavitation volume variation with the respect to a variation of pressure and defines implicitly the local wave speed in the draft tube. This parameter is also decisive for an accurate prediction of system eigen frequencies. Therefore, the local wave speed in the draft tube is intrinsically linked to the eigen frequencies of the hydraulic system. Thus, if the natural frequency of a hydraulic system can be determined experimentally, it also becomes possible to estimate a local wave speed in the draft tube with a numerical model. In the present study, the reduced scale model of a Francis turbine (v=0.29) was investigated at off-design conditions. In order to measure the first eigenmode of the hydraulic test rig, an additional discharge was injected at the inlet of the hydraulic turbine at a variable frequency and amplitude to excite the system. Thus, with different pressure sensors installed on the test rig, the first eigenmode was determined Then, a hydro-acoustic test rig model was developed with the In-house EPFL SIMSEN software and the local wave speed in the draft tube was adjusted to obtain the same first eigen frequency as that measured experimentally. Finally, this method was applied for different Thoma and Froude numbers at part load conditions.