Nanoindentationvignette|Photo au microscope à force atomique d'une indentation par poinçon Berkovitch sur une céramique Zr-Cu-Al : l'écoulement plastique autour de l'indenteur est bien net. La nanoindentation (encore appelée indentation instrumentée) est une technique de caractérisation mécanique des matériaux. Cette technique suscite un intérêt considérable dans le domaine des films minces et des micro-objets Cette technique de caractérisation est dite instrumentée dès lors que la force appliquée au contact et la profondeur de pénétration qu’elle engendre sont mesurées continûment.
Ingénierie tissulaireL'ingénierie tissulaire ou génie tissulaire (en anglais, tissue engineering) est l'ensemble des techniques faisant appel aux principes et aux méthodes de l'ingénierie, de la culture cellulaire, des sciences de la vie, des sciences des matériaux pour comprendre les relations entre les structures et les fonctions des tissus normaux et pathologiques des mammifères, afin de développer des substituts biologiques pouvant restaurer, maintenir ou améliorer les fonctions des tissus.
Méthode des éléments finis de frontièreLa méthode des éléments finis de frontière, méthode des éléments frontière ou BEM - Boundary Element Method - en anglais, est une méthode de résolution numérique. Elle se présente comme une alternative à la méthode des éléments finis avec la particularité d'être plus intéressante dans les domaines de modélisation devenant infinis. Méthode des moments (analyse numérique) Méthode des différences finies Méthode des volumes finis Méthode des éléments finis Méthode des points sources distribués Introduction à l
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.