Apprentissage automatiqueL'apprentissage automatique (en anglais : machine learning, « apprentissage machine »), apprentissage artificiel ou apprentissage statistique est un champ d'étude de l'intelligence artificielle qui se fonde sur des approches mathématiques et statistiques pour donner aux ordinateurs la capacité d'« apprendre » à partir de données, c'est-à-dire d'améliorer leurs performances à résoudre des tâches sans être explicitement programmés pour chacune. Plus largement, il concerne la conception, l'analyse, l'optimisation, le développement et l'implémentation de telles méthodes.
Neural networkA neural network can refer to a neural circuit of biological neurons (sometimes also called a biological neural network), a network of artificial neurons or nodes in the case of an artificial neural network. Artificial neural networks are used for solving artificial intelligence (AI) problems; they model connections of biological neurons as weights between nodes. A positive weight reflects an excitatory connection, while negative values mean inhibitory connections. All inputs are modified by a weight and summed.
Q-learningvignette|400x400px|Dans le Q-learning, l'agent exécute une action a en fonction de l'état s et d'une fonction Q. Il perçoit alors le nouvel état s' et une récompense r de l'environnement. Il met alors à jour la fonction Q. Le nouvel état s' devient alors l'état s, et l'apprentissage continue. En intelligence artificielle, plus précisément en apprentissage automatique, le Q-learning est un algorithme d'apprentissage par renforcement. Il ne nécessite aucun modèle initial de l'environnement.
Deep learning super samplingDeep learning super sampling (DLSS) is a family of real-time deep learning image enhancement and technologies developed by Nvidia that are exclusive to its RTX line of graphics cards, and available in a number of video games. The goal of these technologies is to allow the majority of the graphics pipeline to run at a lower resolution for increased performance, and then infer a higher resolution image from this that approximates the same level of detail as if the image had been rendered at this higher resolution.
Lois de Kirchhoffthumb|upright=.5|Portrait de Gustav Kirchhoff, qui a établi les lois portant son nom en 1845. Les lois de Kirchhoff expriment la conservation de l'énergie et de la charge dans un circuit électrique. Elles portent le nom du physicien allemand qui les a établies en 1845 : Gustav Kirchhoff. Dans un circuit complexe, il est possible de calculer les différences de potentiel aux bornes de chaque résistance et l'intensité du courant continu dans chaque branche de circuit en appliquant les deux lois de Kirchhoff : la loi des nœuds et la loi des mailles.
Circuit LCUn circuit LC est un circuit électrique contenant une bobine (L) et un condensateur (Capacité). C'est ainsi qu'on obtient le phénomène de résonance électrique. Ce type de circuit est utilisé dans les filtres, les tuners et les mélangeurs de fréquences. Par conséquent, son utilisation est répandue dans les transmissions sans fil en radiodiffusion, autant pour l'émission que la réception. thumb|200px|Circuit LC série et parallèle thumb|upright=1.
Deep belief networkIn machine learning, a deep belief network (DBN) is a generative graphical model, or alternatively a class of deep neural network, composed of multiple layers of latent variables ("hidden units"), with connections between the layers but not between units within each layer. When trained on a set of examples without supervision, a DBN can learn to probabilistically reconstruct its inputs. The layers then act as feature detectors. After this learning step, a DBN can be further trained with supervision to perform classification.
Circuit RCUn circuit RC est un circuit électrique, composé d'une résistance et d'un condensateur montés en série ou en parallèle. Dans leur configuration série, les circuits RC permettent de réaliser des filtres électroniques passe-bas ou passe-haut. La constante de temps d'un circuit RC est donnée par le produit de la valeur de ces deux éléments.
Physical neural networkA physical neural network is a type of artificial neural network in which an electrically adjustable material is used to emulate the function of a neural synapse or a higher-order (dendritic) neuron model. "Physical" neural network is used to emphasize the reliance on physical hardware used to emulate neurons as opposed to software-based approaches. More generally the term is applicable to other artificial neural networks in which a memristor or other electrically adjustable resistance material is used to emulate a neural synapse.
Mémoire (informatique)En informatique, la mémoire est un dispositif électronique numérique qui sert à stocker des données. La mémoire est un composant essentiel, présent dans tous les ordinateurs, les consoles de jeux, les GPS et de nombreux appareils électroniques. Les mémoires sont vendues sous forme de pièces détachées de matériel informatique, ou de composants électroniques. Les différences entre les pièces sont la forme, l'usage qui en est fait, la technologie utilisée, la capacité de stockage et le rapport entre le coût et la capacité.