Noise-Resilient and Interpretable Epileptic Seizure Detection
Publications associées (55)
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Deep neural networks have become ubiquitous in today's technological landscape, finding their way in a vast array of applications. Deep supervised learning, which relies on large labeled datasets, has been particularly successful in areas such as image cla ...
The present work proposes a framework for nonlinear model order reduction based on a Graph Convolutional Autoencoder (GCA-ROM). In the reduced order modeling (ROM) context, one is interested in obtaining real -time and many-query evaluations of parametric ...
Hyperdimensional (HD) computing is a novel approach to machine learning inspired by neuroscience, which uses vectors in a hyper-dimensional space to represent data and models. This approach has gained significant interest in recent years with applications ...
Epilepsy is one of the most common neurological disorders that is characterized by recurrent and unpredictable seizures. Wearable systems can be used to detect the onset of a seizure and notify family members and emergency units for rescue. The majority of ...
2023
, , , ,
Deep spiking neural networks (SNNs) offer the promise of low-power artificial intelligence. However, training deep SNNs from scratch or converting deep artificial neural networks to SNNs without loss of performance has been a challenge. Here we propose an ...
2023
We consider the problem of compressing an information source when a correlated one is available as side information only at the decoder side, which is a special case of the distributed source coding problem in information theory. In particular, we consider ...
This thesis focuses on two selected learning problems: 1) statistical inference on graphs models, and, 2) gradient descent on neural networks, with the common objective of defining and analysing the measures that characterize the fundamental limits.In the ...
In communication systems, there are many tasks, like modulation classification, for which Deep Neural Networks (DNNs) have obtained promising performance. However, these models have been shown to be susceptible to adversarial perturbations, namely impercep ...
Deep neural networks have completely revolutionized the field of machinelearning by achieving state-of-the-art results on various tasks ranging fromcomputer vision to protein folding. However, their application is hindered bytheir large computational and m ...
Deep neural networks may easily memorize noisy labels present in real-world data, which degrades their ability to generalize. It is therefore important to track and evaluate the robustness of models against noisy label memorization. We propose a metric, ca ...