Physique au-delà du modèle standardLa physique au-delà du modèle standard se rapporte aux développements théoriques de la physique des particules nécessaires pour expliquer les défaillances du modèle standard, telles que l'origine de la masse, le problème de la violation CP de l'interaction forte, les oscillations des neutrinos, l'asymétrie matière-antimatière, et la nature de la matière noire et de l'énergie noire.
Electromagnetic massElectromagnetic mass was initially a concept of classical mechanics, denoting as to how much the electromagnetic field, or the self-energy, is contributing to the mass of charged particles. It was first derived by J. J. Thomson in 1881 and was for some time also considered as a dynamical explanation of inertial mass per se. Today, the relation of mass, momentum, velocity, and all forms of energy – including electromagnetic energy – is analyzed on the basis of Albert Einstein's special relativity and mass–energy equivalence.
DØDØ (comme l'écrivent ses promoteurs) ou D0 (lire DZero en anglais), est une expérience de physique des particules localisée à Fermilab (Chicago, États-Unis) sur l'accélérateur Tevatron. Le nom du projet vient de celui de la zone d’accueil de l’accélérateur sur lequel on cherche à mesurer la masse du boson de Higgs, qui échappe encore à une détection directe.
Simple random sampleIn statistics, a simple random sample (or SRS) is a subset of individuals (a sample) chosen from a larger set (a population) in which a subset of individuals are chosen randomly, all with the same probability. It is a process of selecting a sample in a random way. In SRS, each subset of k individuals has the same probability of being chosen for the sample as any other subset of k individuals. A simple random sample is an unbiased sampling technique. Simple random sampling is a basic type of sampling and can be a component of other more complex sampling methods.
AntiprotonL'antiproton est l'antiparticule du proton. Les antiprotons sont stables, mais ils ont généralement une durée de vie courte, une collision avec un proton ordinaire faisant disparaître les deux particules. L'antiproton est observé pour la première fois en 1955, au cours d'une expérience conduite dans le bevatron du laboratoire national Lawrence-Berkeley, un accélérateur de particules. Quatre ans plus tard, les physiciens américains Emilio Segrè et Owen Chamberlain reçoivent le prix Nobel de physique pour la découverte de cette antiparticule.
Magnitude absolueEn astronomie, la magnitude absolue indique la luminosité intrinsèque d'un objet céleste, au contraire de la magnitude apparente qui dépend de la distance à l'astre et de l'extinction dans la ligne de visée. Pour un objet situé à l'extérieur du Système solaire, elle est définie par la magnitude apparente qu'aurait cet astre s'il était placé à une distance de référence fixée à 10 parsecs (environ 32,6 années-lumière) en l'absence d'extinction interstellaire.
Convenience samplingConvenience sampling (also known as grab sampling, accidental sampling, or opportunity sampling) is a type of non-probability sampling that involves the sample being drawn from that part of the population that is close to hand. This type of sampling is most useful for pilot testing. Convenience sampling is not often recommended for research due to the possibility of sampling error and lack of representation of the population. But it can be handy depending on the situation. In some situations, convenience sampling is the only possible option.
BarnLe barn (symbole b) est une unité d'aire employée spécialement en physique nucléaire et en physique des particules pour exprimer les sections efficaces. Cette unité se situe en dehors du Système international. Sa valeur est de soit ou . Cette unité est du même ordre de grandeur que la section géométrique du noyau d'un atome, le rayon du proton étant de . Cependant, les valeurs des sections efficaces diffèrent notablement de leurs valeurs géométriques et varient également de façon importante en fonction de la nature, de l'énergie du flux de particules et des interactions qu'elles subissent en traversant le matériau considéré.
Brillance de surfaceEn astronomie, la brillance de surface d'un corps céleste étendu comme une galaxie désigne la densité de flux reçue par unité d'angle solide. Elle est souvent mesurée en magnitude par seconde d'arc au carré (). Certains auteurs donnent aussi cette mesure en employant la minute d'arc. Les unités de la brillance de surface sont alors () La mesure de la brillance de surface dans les longueurs d'onde visible, ou dans l'infrarouge, est la photométrie. Le fond du ciel désigne la brillance de surface du ciel.
Annihilation (physique)En physique, l’annihilation ou anéantissement correspond à la collision entre une particule sous-atomique et son antiparticule respective. Puisque l’énergie et la quantité de mouvement doivent être conservées, les particules ne se muent pas en rien, mais plutôt en nouvelles particules. Les antiparticules possèdent des nombres quantiques exactement opposés à ceux des particules, donc la somme des nombres quantiques du pair égale zéro.