Boson de Higgsthumb|De gauche à droite : Kibble, Guralnik, Hagen, Englert et Brout, en 2010. Le boson de Higgs ou boson BEH, est une particule élémentaire dont l'existence, postulée indépendamment en juin 1964 par François Englert et Robert Brout, par Peter Higgs, en août, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble, permet d'expliquer la brisure de l'interaction unifiée électrofaible (EWSB, pour l'anglais ) en deux interactions par l'intermédiaire du mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble et d'expliquer ainsi pourquoi certaines particules ont une masse et d'autres n'en ont pas.
Large extra dimensionsIn particle physics and string theory (M-theory), the ADD model, also known as the model with large extra dimensions (LED), is a model framework that attempts to solve the hierarchy problem. (Why is the force of gravity so weak compared to the electromagnetic force and the other fundamental forces?) The model tries to explain this problem by postulating that our universe, with its four dimensions (three spatial ones plus time), exists on a membrane in a higher dimensional space.
Tau (particule)Le tau (également appelé lepton tau ou tauon) est une particule élémentaire de la famille des leptons, de masse . Il est symbolisé par τ−. Découvert en 1976 par le Physicien Martin Lewis Perl, ses propriétés sont proches de celles de l'électron et du muon, mais il est plus massif et de faible durée de vie. Avec son neutrino associé et les quarks top (t) et bottom (b), il forme la troisième génération (la plus massive) de fermions dans le modèle standard. Son antiparticule est l'antitau (τ+).
Atome exotiqueUn atome exotique se représente comme un atome « normal » dans lequel au moins une particule subatomique a été remplacée par une autre particule de même charge électrique : par exemple un pion négatif π− ou un muon à la place d'un électron. De telles configurations sont très instables, de sorte que ces atomes exotiques n'ont qu'une durée de vie très brève. Un atome muonique résulte du remplacement d'un électron par un muon, qui est un lepton comme l'électron.
Extra dimensionsIn physics, extra dimensions are proposed additional space or time dimensions beyond the (3 + 1) typical of observed spacetime, such as the first attempts based on the Kaluza–Klein theory. Among theories proposing extra dimensions are: Large extra dimension, mostly motivated by the ADD model, by Nima Arkani-Hamed, Savas Dimopoulos, and Gia Dvali in 1998, in an attempt to solve the hierarchy problem. This theory requires that the fields of the Standard Model are confined to a four-dimensional membrane, while gravity propagates in several additional spatial dimensions that are large compared to the Planck scale.
Bosons W et ZIn particle physics, the W and Z bosons are vector bosons that are together known as the weak bosons or more generally as the intermediate vector bosons. These elementary particles mediate the weak interaction; the respective symbols are _W boson+, _W boson-, and _Z boson0. The _W boson+- bosons have either a positive or negative electric charge of 1 elementary charge and are each other's antiparticles. The _Z boson0 boson is electrically neutral and is its own antiparticle. The three particles each have a spin of 1.
Boson de jaugeEn physique des particules, un boson de jauge est une particule élémentaire de la classe des bosons qui agit comme porteur d'une interaction élémentaire. Plus spécifiquement, les particules élémentaires dont les interactions sont décrites par une théorie de jauge exercent l'une sur l'autre des forces par échange de bosons de jauge, généralement sous forme de particules virtuelles. Le modèle standard décrit trois sortes de bosons de jauge : les photons, les bosons W et Z et les gluons.
Gargamelle (détecteur)Gargamelle est une chambre à bulles du CERN, célèbre pour avoir mis en évidence l'interaction faible par courant neutre en . Le courant neutre fut la première preuve de l'existence des boson W et boson Z. Mis en service au CERN en 1970, il était conçu pour détecter les faisceaux de neutrinos et d'antineutrinos émis par le synchrotron à protons (PS ; 1970-76). En 1979, on découvrit une fissure impossible à réparer dans l'enceinte, ce qui conduisit au déclassement de ce détecteur. Catégorie:Expérience de phy
ProtonLe proton est une particule subatomique portant une charge électrique élémentaire positive. Les protons sont présents dans les noyaux atomiques, généralement liés à des neutrons par l'interaction forte (la seule exception, mais celle du nucléide le plus abondant de l'univers, est le noyau d'hydrogène ordinaire (protiumH), un simple proton). Le nombre de protons d'un noyau est représenté par son numéro atomique Z. Le proton n'est pas une particule élémentaire mais une particule composite.
Désintégration du protonEn physique des particules, la désintégration du proton désigne un mode hypothétique de décroissance radioactive dans laquelle le proton se désintègre en des particules subatomiques plus légères, comme le pion neutre et le positron. Il n'existe actuellement aucune preuve expérimentale indiquant que la désintégration du proton se produise ; ce qui place la demi-vie théorique du proton à une valeur supérieure à 10 années. Dans le modèle standard, les protons (un type de baryon), sont théoriquement stables parce que le nombre baryonique est censé se conserver.