Mathematical formulation of the Standard ModelThis article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson. The Standard Model is renormalizable and mathematically self-consistent, however despite having huge and continued successes in providing experimental predictions it does leave some unexplained phenomena.
MasseEn physique, la masse est une grandeur physique positive intrinsèque d'un corps. On pensait traditionnellement qu'elle était liée à la quantité de matière contenue dans un corps physique, jusqu'à la découverte de l'atome et de la physique des particules. Il a été constaté que différents atomes et différentes particules élémentaires, ayant théoriquement la même quantité de matière, ont néanmoins des masses différentes. En physique newtonienne, c'est une grandeur extensive, c'est-à-dire que la masse d'un corps formé de parties est la somme des masses de ces parties.
R-parityR-parity is a concept in particle physics. In the Minimal Supersymmetric Standard Model, baryon number and lepton number are no longer conserved by all of the renormalizable couplings in the theory. Since baryon number and lepton number conservation have been tested very precisely, these couplings need to be very small in order not to be in conflict with experimental data. R-parity is a symmetry acting on the Minimal Supersymmetric Standard Model (MSSM) fields that forbids these couplings and can be defined as or, equivalently, as where s is spin, B is baryon number, and L is lepton number.
LuminositéEn astronomie, la luminosité est la quantité totale d'énergie émise par unité de temps (le flux énergétique), par une étoile, une galaxie, ou n'importe quel autre objet céleste. Elle s'exprime en pratique en luminosité solaire ( = ). Le flux lumineux, qui mesure plus particulièrement l'émission en lumière visible, peut également s'exprimer sur une échelle logarithmique par la magnitude absolue. En astronomie, elle représente la quantité totale d'énergie rayonnée (dans le domaine de l'électromagnétisme) par unité de temps par un astre.
BarnLe barn (symbole b) est une unité d'aire employée spécialement en physique nucléaire et en physique des particules pour exprimer les sections efficaces. Cette unité se situe en dehors du Système international. Sa valeur est de soit ou . Cette unité est du même ordre de grandeur que la section géométrique du noyau d'un atome, le rayon du proton étant de . Cependant, les valeurs des sections efficaces diffèrent notablement de leurs valeurs géométriques et varient également de façon importante en fonction de la nature, de l'énergie du flux de particules et des interactions qu'elles subissent en traversant le matériau considéré.
Intervalle de confiancevignette|Chaque ligne montre 20 échantillons tirés selon la loi normale de moyenne μ. On y montre l'intervalle de confiance de niveau 50% pour la moyenne correspondante aux 20 échantillons, marquée par un losange. Si l'intervalle contient μ, il est bleu ; sinon il est rouge. En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire.
Mass in special relativityThe word "mass" has two meanings in special relativity: invariant mass (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy (also called total energy).
ATLAS (détecteur)thumb|Le détecteur ATLAS vers la fin février 2006 ATLAS (acronyme de A Toroidal LHC ApparatuS : - dispositif instrumental toroïdal pour le LHC - qui utilise un électro-aimant toroïdal où le champ magnétique se referme sur lui-même dans l'air, sans l'aide d'un retour de fer) est l'une des du collisionneur LHC au CERN. Il s'agit d'un détecteur de particules semblable à CMS, mais de plus grande taille et de conception différente. Il a pour tâche de détecter le boson de Higgs, des particules supersymétriques (SUSY).
Référentiel barycentriqueEn physique, le référentiel barycentrique, appelé aussi référentiel du centre de masse, est un référentiel en translation (par rapport à un référentiel galiléen de référence) dans lequel le centre d'inertie du système étudié est immobile. La translation du référentiel barycentrique ne signifie pas que c'est une translation rectiligne. Par exemple, une cabine de grande roue de fête foraine, quand elle tourne, est en mouvement de translation circulaire et elle se comporte comme le référentiel barycentrique de la Lune qui, elle, est en mouvement de rotation dans le référentiel géocentrique.
AntiprotonL'antiproton est l'antiparticule du proton. Les antiprotons sont stables, mais ils ont généralement une durée de vie courte, une collision avec un proton ordinaire faisant disparaître les deux particules. L'antiproton est observé pour la première fois en 1955, au cours d'une expérience conduite dans le bevatron du laboratoire national Lawrence-Berkeley, un accélérateur de particules. Quatre ans plus tard, les physiciens américains Emilio Segrè et Owen Chamberlain reçoivent le prix Nobel de physique pour la découverte de cette antiparticule.