Résumé
In physics, the center-of-momentum frame (COM frame), also known as zero-momentum frame, is the inertial frame in which the total momentum of the system vanishes. It is unique up to velocity, but not origin. The center of momentum of a system is not a location, but a collection of relative momenta/velocities: a reference frame. Thus "center of momentum" is a short for "center-of-momentum ". A special case of the center-of-momentum frame is the center-of-mass frame: an inertial frame in which the center of mass (which is a single point) remains at the origin. In all center-of-momentum frames, the center of mass is at rest, but it is not necessarily at the origin of the coordinate system. In special relativity, the COM frame is necessarily unique only when the system is isolated. The center of momentum frame is defined as the inertial frame in which the sum of the linear momenta of all particles is equal to 0. Let S denote the laboratory reference system and S′ denote the center-of-momentum reference frame. Using a Galilean transformation, the particle velocity in S′ is where is the velocity of the mass center. The total momentum in the center-of-momentum system then vanishes: Also, the total energy of the system is the minimal energy as seen from all inertial reference frames. In relativity, the COM frame exists for an isolated massive system. This is a consequence of Noether's theorem. In the COM frame the total energy of the system is the rest energy, and this quantity (when divided by the factor c2, where c is the speed of light) gives the rest mass (invariant mass) of the system: The invariant mass of the system is given in any inertial frame by the relativistic invariant relation but for zero momentum the momentum term (p/c)2 vanishes and thus the total energy coincides with the rest energy. Systems that have nonzero energy but zero rest mass (such as photons moving in a single direction, or, equivalently, plane electromagnetic waves) do not have COM frames, because there is no frame in which they have zero net momentum.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (40)
PHYS-101(en): General physics : mechanics (English)
Students will learn the principles of mechanics to enable a better understanding of physical phenomena, such as the kinematics and dyamics of point masses and solid bodies. Students will acquire the c
ME-201: Continuum mechanics
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
PHYS-423: Plasma I
Following an introduction of the main plasma properties, the fundamental concepts of the fluid and kinetic theory of plasmas are introduced. Applications concerning laboratory, space, and astrophysica
Afficher plus