Publication

Bayesian Gaussian mixture model for robotic policy imitation

Résumé

A common approach to learn robotic skills is to imitate a demonstrated policy. Due to the compounding of small errors and perturbations, this approach may let the robot leave the states in which the demonstrations were provided. This requires the consideration of additional strategies to guarantee that the robot will behave appropriately when facing unknown states. We propose to use a Bayesian method to quantify the action uncertainty at each state. The proposed Bayesian method is simple to set up, computationally efficient, and can adapt to a wide range of problems. Our approach exploits the estimated uncertainty to fuse the imitation policy with additional policies. It is validated on a Panda robot with the imitation of three manipulation tasks in the continuous domain using different control input/state pairs.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.