Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Dysfunction of sensorimotor predictive processing is thought to underlie abnormalities in self-monitoring producing passivity symptoms in psychosis. Experimentally induced sensorimotor conflict can produce a failure in bodily self-monitoring (presence hallucination [PH]), yet it is unclear how this is related to auditory self-monitoring and psychosis symptoms. Here we show that the induction of sensorimotor conflict in early psychosis patients induces PH and impacts auditory-verbal self-monitoring. Participants manipulated a haptic robotic system inducing a bodily sensorimotor conflict. In experiment 1, the PH was measured. In experiment 2, an auditory-verbal self-monitoring task was performed during the conflict. Fifty-one participants (31 early psychosis patients, 20 matched controls) participated in the experiments. The PH was present in all participants. Psychosis patients with passivity experiences (PE+) had reduced accuracy in auditory-verbal self-other discrimination during sensorimotor stimulation, but only when sensorimotor stimulation involved a spatiotemporal conflict (F(2, 44) = 6.68, P = .002). These results show a strong link between robotically controlled alterations in sensorimotor processing and auditory misattribution in psychosis and provide evidence for the role of sensorimotor processes in altered self-monitoring in psychosis.
, , , ,
,
Maude Schneider, Farnaz Delavari